

CERTIFICATE OF ANALYSIS

tel: 800.659.6799 < 540.585.3030

Tax: 540.585.3012

info@inorganioventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

1-Feb-2014

2.0 DESCRIPTION OF CRM

1000 µg/mL Copper in 3% (v/v) HNO3

Catalog Number:

CGCU1-1, CGCU1-2, and CGCU1-5

Lot Number:

E2-CU02130

Starting Material:

Cu shot

Starting Material Purity (%):

100.0000

Starting Material Lot No:

1612

Matrix:

3% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,002 ± 5 µg/mL - weighted mean

Certified Density:

1.016 g/mL (measured at $20 \pm 1^{\circ}$ C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{n} x_{i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2 \left[\left(\sum s_i \right)^2 \right]^{\frac{1}{2}}}{\left(n \right)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement,

weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,001 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3114 Lot Number: 011017

Assay Method #2

 $1,003 \pm 3 \mu g/mL$

QC IRON SIP 130125

FICATE OF ANALYSIS

el: 800 669.6799 < 540 585 3030

fax: 540.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 μg/mL Iron in 2% (v/v) HNO3

Catalog Number:

CGFE1-1, CGFE1-2, and CGFE1-5

Lot Number:

F2-FE04014

Starting Material:

Fe pieces

Starting Material Purity (%):

99.9969

Starting Material Lot No:

1602, 1618

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,002 ± 5 µg/mL - weighted mean

Certified Density:

1.009 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

(x̄) = mean

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^{1/2}

2 = the coverage factor.

 $\left[\left.\Sigma(s_i)^2\right]^{\frac{3}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

1,001 ± 3 µg/mL

ICP Assay NIST SRM 3126a Lot Number: 051031

Assay Method #2

 $1,003 \pm 3 \mu g/mL$

OCHO TRIVIANIA

tel: 300 669.6799 × 540.585 3030

fax: 540.585.3012

info@incrganioventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

10000 μg/mL Iron in 5% HNO3

Catalog Number:

CGFE10-1, CGFE10-2, and CGFE10-5

Lot Number:

F2-FE04007

Starting Material:

Fe pieces

Starting Material Purity (%):

99.9972

00.00

1618

1-Feb-2014

Starting Material Lot No:

. . .

Matrix:

5% HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $9991 \pm 51 \mu g/mL$

Certified Density:

1.047 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\ \Sigma(s_i)^2 \ \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term

stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

9978 ± 31 µg/mL

ICP Assay NIST SRM 3126a Lot Number: 051031

Assay Method #2

 $10.010 \pm 25 \,\mu g/mL$

CERTIFICATE OF ANALYSIS

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

tel: 800 569 5799 × 540.585.3030 tax: 540.585.3012

info@inorganioventures.com

1.0 **INORGANIC VENTURES** is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

DESCRIPTION OF CRM 2.0

1000 µg/mL Gadolinium in 7% (v/v) HNO3

Catalog Number:

CGGD1-1, CGGD1-2, and CGGD1-5

Lot Number:

F2-GD01047

Starting Material:

Gd2O3

Starting Material Purity (%):

99.9988

Starting Material Lot No:

1675

1-Feb-2014

Matrix:

7% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

999 ± 5 µg/mL - weighted mean

Certified Density:

1.036 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\sum (\mathbf{s}_i)^2\right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where's stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed.,
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,001 \pm 3 \mu g/mL$

EDTA NIST SRM 928 Lot Number: 928

Assay Method #2

 $997 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3118a Lot Number: 992004

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

tel: 800.669.6799 < 540.585.3030

fax: 540.585.3012

info@inorganioventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered

"General Requirements for the Competence of Testing and Calibration Laboratories."

manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Mercury in 5% (v/v) HNO3

Catalog Number:

CGHG1-1, CGHG1-2, and CGHG1-5

Lot Number:

F2-HG02096

Starting Material:

Hg metal

Starting Material Purity (%):

100.0000

Starting Material Lot No:

R307HGA1

1-Feb-2014

Matrix:

5% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,002 ± 6 µg/mL - weighted mean

Certified Density:

1.025 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^{1/2}

2 = the coverage factor.

 $\left[\left.\Sigma(s_i)^2\right]^{\gamma_2}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term

stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1000 \pm 4 \mu g/mL$

ICP Assay NIST SRM 3133 Lot Number: 061204

Assay Method #2

1006 ± 3 µg/mL

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

tel: 800.669.6799 < 540.585.3030

tax: 540.585.3012

info@incrganioventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM**

1000 μg/mL Potassium in 0.1% (v/v) HNO3

Catalog Number:

CGK1-1, CGK1-2, and CGK1-5

Lot Number:

E2-K03026

Starting Material:

KNO3

Starting Material Purity (%):

99.9981

Starting Material Lot No:

B19P01

Matrix:

0.1% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

999 ± 5 µg/mL - weighted mean

Certified Density:

1.000 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2 [(\Sigma s_i)^2]^{\frac{1}{2}}}{(n)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement,

weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

998 ± 3 µg/mL

ICP Assay NIST SRM 3141a Lot Number: 051220

Assay Method #2

 $1,000 \pm 2 \mu g/mL$

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

tel: 800.669.6799 • 540.585.3030

fax: 540,585.3012

info@inorganioventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

10000 µg/mL Potassium in 2% (v/v) HNO3

Catalog Number:

CGK10-1, CGK10-2, and CGK10-5

Lot Number:

F2-K03029

Starting Material:

KNO3

Starting Material Purity (%):

99.9981

Starting Material Lot No:

B19P01

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

9,979 ± 55 µg/mL - weighted mean

Certified Density:

1.024 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left.\Sigma(s_i)^2\right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term

stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1 A

Assay Method #1

9,981 ± 40 µg/mL

ICP Assay NIST SRM 3141a Lot Number: 051220

Assay Method #2

9,971 ± 18 µg/mL

CATE OF ANALYSIS

tet, 300.669.6799 ± 540.585.3030

tax: 540.585.3012

info@inoroanicventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM 100

1000 µg/mL Lithium in 0.1% (v/v) HNO3

Catalog Number:

CGLI1-1, CGLI1-2, and CGLI1-5

Lot Number:

F2-LI02144

Starting Material:

Li2CO3

Starting Material Purity (%):

99.9989

Starting Material Lot No:

1312

Matrix:

0.1% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 6 µg/mL - weighted mean

Certified Density:

1.005 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left[\Sigma(s_i)^2 \right]^{\frac{1}{2}} \right]$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term

stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

1000 ± 4 μg/mL

ICP Assay NIST SRM 3129a Lot Number: 000505

Assay Method #2

 $998 \pm 2 \mu g/mL$

CERTIFICATE OF ANALYS

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

tel: 800.669.6799 * 540.585.3030 fax: 540.585.3012

info@inorganioventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

DESCRIPTION OF CRM 2.0

1000 µg/mL Magnesium in 0.1% (v/v) HNO3

Catalog Number:

CGMG1-1, CGMG1-2, and CGMG1-5

Lot Number:

E2-MG03105

Starting Material:

Mg metal

Starting Material Purity (%):

99.9998

Starting Material Lot No:

1484

Matrix:

0.1% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,001 ± 5 µg/mL - weighted mean

Certified Density:

1.003 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2 \left[\left(\sum s_i \right)^2 \right]^{\frac{1}{2}}}{\left(n \right)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,001 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3131a Lot Number: 050302

Assay Method #2

 $1,000 \pm 3 \mu g/mL$

CERTIFICATE OF ANALYSIS

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

Salar Art Control of the Control of

tel: 800 669.6799 < 540.585.3030 tax: 540.585.3012

info@inorganioventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the 1.0 Competence of Reference Material Producers" and ISO 9001 registered

manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration

Laboratories."

2.0 **DESCRIPTION OF CRM** 10000 µg/mL Magnesium in 2% (v/v) HNO3

Catalog Number:

CGMG10-1, CGMG10-2, and CGMG10-5

Lot Number:

E2-MG03106

Starting Material:

Mg metal

Starting Material Purity (%):

99.9998

Starting Material Lot No:

1484

Matrix:

2% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $10,000 \pm 54 \,\mu\text{g/mL}$ - weighted mean

Certified Density:

1.053 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \underline{\sum x_i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma_s_i)^2]^{\frac{1}{2}}}{(n)^{\frac{1}{2}}}$

 Σ_{si} = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $9,999 \pm 38 \mu g/mL$

ICP Assay NIST SRM 3131a Lot Number: 050302

Assay Method #2

10,001 ± 26 µg/mL

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.559.5799 × 540.585.3030

fax: 540.585.3012

info@incrganioventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration

Laboratories."

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Manganese in 3% (v/v) HNO3

Catalog Number:

CGMN1-1, CGMN1-2, and CGMN1-5

Lot Number:

E2-MN02093

Starting Material:

Mn pieces

Starting Material Purity (%):

99.9940

Starting Material Lot No:

1573

Matrix:

3% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

999 ± 5 µg/mL - weighted mean

Certified Density:

1.017 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma s_i)^2]^{\frac{1}{2}}}{(n)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $998 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3132 Lot Number: 050429

Assay Method #2

 $1,000 \pm 3 \mu g/mL$

PPM 15 H2C

TE OF ANALYS

tel: 800.669.6799 + 540.585.3030 tax: 540.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025

"General Requirements for the Competence of Testing and Calibration

Laboratories."

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Molybdenum in H2O / tr. NH4OH

Catalog Number:

CGMO1-1, CGMO1-2, and CGMO1-5

Lot Number:

E2-MO02046

Starting Material:

(NH4)6Mo7O24xH2O

Starting Material Purity (%):

99.9999

Starting Material Lot No:

P704MOA1

Matrix:

3.0

H2O / tr. NH4OH

CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

999 ± 5 µg/mL - weighted mean

Certified Density:

1.000 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{n} x_{i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2 [(\Sigma s_i)^2]^{2}}{(n)^{1/2}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

· "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

· This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $997 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3134 Lot Number: 891307

Assay Method #2

 $1,001 \pm 3 \mu g/mL$

Calculated NIST SRM Lot Number: See Sec. 4.2

CERTIFICATE OF ANALYSIS

GC ZODIC W STD 12 BPW 17 .1% N11

tel: 800.669.6799 > 540.585.3030 fox: 540.585.3012

info@incrganicventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 μg/mL Sodium in 0.1% (v/v) HNO3

Catalog Number:

CGNA1-1, CGNA1-2, and CGNA1-5

Lot Number:

F2-NA03098

Starting Material:

Na2CO3

Starting Material Purity (%):

99.9999

Starting Material Lot No:

C18157

Matrix:

0.1% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,003 ± 5 µg/mL - weighted mean

Certified Density:

1.001 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{n=1}^{\infty} x_n$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $2 \left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\ \Sigma(s_i)^2 \ \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term

stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,003 \pm 4 \mu g/mL$

ICP Assay NIST SRM 3152a Lot Number: 010728

Assay Method #2

 $1,002 \pm 2 \mu g/mL$

QC SODIUM STD 10K PPM IN

"IFICATE OF ANALYSIS

tel: 800.669.6799 • 540.585.3030 fax: 540.685.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

10000 μg/mL Sodium in 2% (v/v) HNO3

Catalog Number:

CGNA10-1, CGNA10-2, and CGNA10-5

Lot Number:

F2-NA03103

Starting Material:

Na2CO3

Starting Material Purity (%):

99.9995

Starting Material Lot No:

1628

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

9,992 ± 53 µg/mL - Weighted mean

Certified Density:

1.034 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left[\left[\Sigma(s_i)^2 \right]^{\frac{1}{2}} \right] = \text{The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.$

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

9,990 ± 36 µg/mL

ICP Assay NIST SRM 3152a Lot Number: 010728

Assay Method #2

10,004 ± 16 µg/mL

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

GTIFICATE OF ANALYS

fox: 540,585,3010

into@inorganioventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration

Expires

1-Feb-2014

2.0 **DESCRIPTION OF CRM**

Laboratories."

1000 µg/mL Nickel in 2% (v/v) HNO3

Catalog Number:

CGNI1-1, CGNI1-2, and CGNI1-5

Lot Number:

E2-NI02074

Starting Material:

Ni pieces

Starting Material Purity (%):

99.9998

Starting Material Lot No:

1559

Matrix:

2% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,003 ± 5 µg/mL - weighted mean

Certified Density:

1.011 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \underline{\sum x_i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2 [(\Sigma s_i)^2]^{2}}{(n)^{1/2}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,002 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3136 Lot Number: 000612

Assay Method #2

 $1,003 \pm 3 \mu g/mL$

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 300,659,5799 + 540,585,3030 tax: 540.585.3010

info@inorganioventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

1-Feb-2014

2,0 **DESCRIPTION OF CRM** 1000 µg/mL Lead in 0.5% (v/v) HNO3

Catalog Number:

CGPB1-1, CGPB1-2, and CGPB1-5

Lot Number:

F2-PB03035

Starting Material:

Pb(NO3)2

Starting Material Purity (%):

99.9998

Starting Material Lot No:

1717

Matrix:

0.5% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,001 ± 5 µg/mL - weighted mean

Certified Density:

1.002 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma s_i)^2]^{\frac{1}{2}}}{(n)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors (Most common are the errors from instrumental measurement,

weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,000 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3128 Lot Number: 101026

Assay Method #2

 $1,002 \pm 3 \mu g/mL$

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

1-Feb-2014

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration

2.0 **DESCRIPTION OF CRM**

Laboratories."

1000 µg/mL Antimony in 1% (v/v) HNO3 / 3% Tartaric Acid

Catalog Number:

CGSB1-1, CGSB1-2 and CGSB1-5

Lot Number:

Matrix:

3.0

F2-SB03010

Starting Material:

Sb shot

Starting Material Purity (%):

99.9974

Starting Material Lot No:

1647

1% (v/v) HNO3 / 3% Tartaric Acid

CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 5 µg/mL - weighted mean

Certified Density:

1.021 g/mL (measured at 20 \pm 1°C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\ \Sigma(s_i)^2 \right]^{2}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term

stability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

999 ± 3 µg/mL

ICP Assay NIST SRM 3102A Lot Number: 061229

Assay Method #2

 $1.000 \pm 3 \, \mu a/mL$

Calculated NIST SRM Lot Number: See Sec. 4.2

CERTIFICATE OF ANALYS

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

The second secon

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganieventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration

2.0 **DESCRIPTION OF CRM**

Laboratories."

1000 µg/mL Antimony in 1% (v/v) HNO3 / 3% Tartaric Acid

Catalog Number:

CGSB1-1, CGSB1-2 and CGSB1-5

Lot Number:

F2-SB03010

Starting Material:

Sb shot

Starting Material Purity (%):

99.9974

Starting Material Lot No:

1647

Matrix:

1% (v/v) HNO3 / 3% Tartaric Acid

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,000 ± 5 µg/mL - weighted mean

Certified Density:

1.021 g/mL (measured at 20 \pm 1°C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\left. \Sigma(s_i)^2 \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $999 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3102A Lot Number: 061229

Assay Method #2

1,000 ± 3 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

CATE OF ANALYSIS

tel: 300.659.6799 = 540.585.3030

fax: 540.585.3012

info@inorganioventures.com

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

1.0 **INORGANIC VENTURES** is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Scandium in 7% (v/v) HNO3

Catalog Number:

CGSC1-1, CGSC1-2, and CGSC1-5

Lot Number:

F2-SC02098

Starting Material:

Sc203

Starting Material Purity (%):

99.9914

Starting Material Lot No:

1630A,B

Matrix:

7% (v/v) HNO3

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

 $1,004 \pm 6 \mu g/mL$ - weighted mean

Certified Density:

1.043 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \underline{\sum x_i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma s_i)^2]}{(n)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors (Most common are the errors from instrumental measurement,

weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,004 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3148a Lot Number: 792111

Assay Method #2

 $1,004 \pm 3 \mu g/mL$

FICATE OF ANALYSIS

tel: 800.569.5799 • 540.585.3030

fax. 540.585.3012

info@inorganioventures.com

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Selenium(+4) in 2% (v/v) HNO3

Catalog Number:

CGSE(4)1-1, CGSE(4)1-2, and CGSE(4)1-5

Lot Number:

E2-SE02033

Starting Material:

Se shot

Starting Material Purity (%):

99.9996

Starting Material Lot No:

1616

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,001 ± 6 µg/mL - weighted mean

Certified Density:

1.011 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \underline{\sum x_i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma s_i)^2]}{(n)^{\frac{1}{2}}}$

 Σ s_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,002 \pm 4 \mu g/mL$

ICP Assay NIST SRM 3149 Lot Number: 100901

Assay Method #2

 $1,000 \pm 3 \mu g/mL$

Calculated NIST SRM Lot Number: See Sec. 4.2

GARTIFICATE OF ANALYSIS

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@Inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

DESCRIPTION OF CRM 2.0

1000 µg/mL Silica in 1% (v/v) HNO3 / tr. HF

Catalog Number:

CGSIO1-1, CGSIO1-2, and CGSIO1-5

Lot Number:

E2-S103009

Starting Material:

SiO2

Starting Material Purity (%):

Starting Material Lot No:

99.9998

1551

Matrix:

1% (v/v) HNO3 / tr. HF

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,002 ± 5 µg/mL - no weighted mean

Certified Density:

1.006 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma_s_i)^2]^{\frac{1}{2}}}{(n)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

· "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

· This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1 Assay Method #1

 $1,002 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3150 Lot Number: 071204

IFICATE OF ANALYSIS

tel: 800 669.5799 · 540.585 3030 fax: 540.585.3012

info@incroanieventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 **INORGANIC VENTURES** is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

DESCRIPTION OF CRM 2.0

1000 µg/mL Strontium in 0.1% (v/v) HNO3

Catalog Number:

CGSR1-1, CGSR1-2, and CGSR1-5

Lot Number:

F2-SR02036

Starting Material:

SrCO3

Starting Material Purity (%):

99.9988

Starting Material Lot No:

1610

1-Feb-2014

Matrix:

0.1% (v/v) HNO3

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

1,000 ± 5 µg/mL - weighted mean

Certified Density:

1.001 g/mL (measured at $20 \pm 1^{\circ}$ C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left[\Sigma(s_i)^2 \right]^{\frac{1}{2}} \right]$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term

stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties," (ISO VIM, 2nd ed.,
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,000 \pm 3 \mu g/mL$

EDTA NIST SRM 928 Lot Number: 928

Assay Method #2

 $999 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3153a Lot Number: 990906

TIFICATE OF ANALYSI

tet: 800.669.6799 < 540.585.3030

fax: 540,585,3012

info@Inorganiaventures.com

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Expires

1-Feb-2014

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Thorium in 4% (v/v) HNO3

Catalog Number:

CGTH1-1, CGTH1-2, and CGTH1-5

Lot Number:

E2-TH01086

Starting Material:

Th(NO3)4x4H2O

Starting Material Purity (%):

99.9974

Starting Material Lot No:

X0033369-8 and X25828-7

Matrix:

4% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,006 ± 5 µg/mL - weighted mean

Certified Density:

1.022 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2 [(\Sigma s_i)^2]^{r_2}}{(n)^{\frac{r_2}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NiST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,007 \pm 3 \mu g/mL$

EDTA NIST SRM 928 Lot Number: 928

Assay Method #2

 $1.005 \pm 3 \,\mu g/mL$

ICP Assay NIST SRM 3159 Lot Number: 992912

PITIFICATE OF ANALYSI

tel: 300 669.6799 × 540.585.3030 fax: 540.585.3012

info@inorganioventures.com

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

1-Feb-2014

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Titanium in 2% (v/v) HNO3 / tr. HF

Catalog Number:

CGTI1-1, CGTI1-2, and CGTI1-5

Lot Number:

F2-TI02090

Starting Material:

Ti powder

Starting Material Purity (%):

99.9976

Starting Material Lot No:

1707

Matrix:

2% (v/v) HNO3 / tr. HF

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,002 ± 5 µg/mL - weighted mean

Certified Density:

1.011 g/mL (measured at 20 \pm 1°C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left[\Sigma(s_i)^2\right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term

stability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1.000 \pm 3 \,\mu g/mL$

ICP Assay NIST SRM 3162a Lot Number: 060808

Assay Method #2

 $1.003 \pm 3 \mu g/mL$

Calculated NIST SRM Lot Number: See Sec. 4.2

P-SARTIFICATE OF ANALYSIS

tel: 300.659.6799 < 540.585.3030

fax: 540.585.3012

info@inorganioventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 **INORGANIC VENTURES** is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Expires

1-Feb-2014

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Thallium in 0.7% (v/v) HNO3

Catalog Number:

CGTL1-1, CGTL1-2, and CGTL1-5

Lot Number:

E2-TL01124

Starting Material:

TINO3

Starting Material Purity (%):

99.9996

Starting Material Lot No:

1576

Matrix:

0.7% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,002 ± 5 µg/mL - weighted mean

Certified Density:

1.003 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

 x_i = individual results

n = number of measurements

Uncertainty (±) = $\frac{2 \left[\left(\sum s_i \right)^2 \right]^{n}}{\left(n \right)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors (Most common are the errors from instrumental measurement,

weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,004 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3158 Lot Number: 993012

Assay Method #2

 $1,000 \pm 3 \mu g/mL$

Calculated NIST SRM Lot Number: See Sec. 4.2

RTIFICATE OF ANALYS

tel: 300,669.6799 - 540,585,3030 Tax: 540.585.3012

info@inorganioventures.com

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the 1.0 Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

1-Feb-2014

DESCRIPTION OF CRM 2.0

1000 µg/mL Uranium in 2% (v/v) HNO3

Catalog Number:

CGU1-1, CGU1-2, and CGU1-5

Lot Number:

E2-U01091

Starting Material:

UO2(NO3)2.6H2O

Starting Material Purity (%):

99.9979

Starting Material Lot No:

1627

Matrix:

2% (v/v) HNO3

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

1,004 ± 6 µg/mL - weighted mean

Certified Density:

1.010 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma s_i)^2]^{r_2}}{(n)^{r_2}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement,

weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

Certified Abundance: The 235U in this standard is depleted. The Certified abundances in Atom % are as follows:

IV's Certified Abundance

<u>Isotope</u>

Atom%

Uranium 238U

 99.6 ± 0.1

235U

 0.42 ± 0.05

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- \cdot "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

CERTIFICATE OF ANALYSIS

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

fel: 800.669.6799 → 540 585 3030 fox: 540.585.3012

info@inciganioventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Expires

2.0 DESCRIPTION OF CRM

1000 µg/mL Vanadium in 2% (v/v) HNO3

Catalog Number:

CGV1-1, CGV1-2, and CGV1-5

Lot Number:

F2-V02074

Starting Material:

V205

Starting Material Purity (%):

99.9893

Starting Material Lot No:

46

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1,000 \pm 5 \mu g/mL$ - weighted mean

Certified Density:

1.016 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \underline{\sum x_i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma s_i)^2]^{\frac{1}{2}}}{(n)^{\frac{1}{2}}}$

 $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$

(n) 4 (Most cor

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

998 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 928

Assay Method #2

 $1,001 \pm 4 \mu g/mL$

ICP Assay NIST SRM 3165 Lot Number: 992706

TIFICATE OF ANALYSIS

tel: 300.669.6799 × 540.585.3030

fox: 540.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

Parallel Control of the Control of t

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 μg/mL Zinc in 2% (v/v) HNO3

Catalog Number:

CGZN1-1, CGZN1-2, and CGZN1-5

Lot Number:

F2-ZN02075

Starting Material:

Zn shot

Starting Material Purity (%):

99.9999

Starting Material Lot No:

1676 1677

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 5 µg/mL - weighted mean

Certified Density:

1.007 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma s_i)^2]^{\frac{1}{2}}}{(n)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement,

weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- \cdot "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

998 ± 3 µg/mL

ICP Assay NIST SRM 3168a Lot Number: 080123

Assay Method #2

 $1,001 \pm 3 \mu g/mL$

RTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganioventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

Stock Solution

Catalog No.:

2007ICS-1

Lot Number:

F2-MEB415153

Matrix:

0.3% HF(v/v),

2% HNO3(v/v)

1,000 µg/mL ea:

Ti.

500 μg/mL ea:

В.

300 µg/mL ea:

Mo,

230 µg/mL ea:

Si

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Boron, B	500.0 ± 3.4 μg/mL	Molybdenum, Mo	300.0 ± 1.7 μg/mL	Silicon, Si	230.0 ± 1.1 µg/mL
Titanium, Ti	1,000 ± 7 μg/mL				
Certified	d Density: 1.014	g/mL (measured	l at 20 ± 1° C)	l	

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{n} x_{i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left[\left[\Sigma(s_i)^2 \right]^{\frac{1}{2}} \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

RESTIFICATE OF ANAL

tet: 300.669.6799 × 540.585.3030

tax: 540.585.3012

info@morganioventures.com

Christiansburg, VA 24073 . USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

DESCRIPTION OF CRM 2.0

Stock Solution

Catalog No.:

2007ICS-3

Lot Number:

F2-MEB405116

Matrix:

7% HNO3(v/v)

1-Feb-2014

20,000 µg/mL ea:

K,

1,000 µg/mL ea:

As,

TI.

500 μg/mL ea:

Se,

300 µg/mL ea:

Ag,

Ва,

Cd,

Co,

Cr3,

Cu,

Ni,

٧,

Zn,

200 μg/mL ea:

Mn,

100 μg/mL ea:

Ве

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Arsenic, As	1,000 ± 6 μg/mL	Barium, Ba	300.0 ± 2.0 μg/mL	Beryllium, Be	100.0 ± 0.6 μg/mL
Cadmium, Cd	300.0 ± 1.6 μg/mL	Chromium+3, Cr3	300.0 ± 2.1 μg/mL	Cobalt, Co	300.0 ± 1.9 μg/mL
Copper, Cu	300.0 ± 2.1 μg/mL	Lead, Pb	1,000 ± 8 μg/mL	Manganese, Mn	200.0 ± 1.1 μg/mL
Nickel, Ni	300.0 ± 2.2 μg/mL	Potassium, K	20,000.0 ± 130.0 μg/mL	Selenium, Se	500.0 ± 3.3 μg/mL
Silver, Ag	300.0 ± 1.9 μg/mL	Thallium, Tl	1,000 ± 6 μg/mL	Vanadium, V	300.0 ± 2.6 μg/mL
Zinc, Zn	300.0 ± 1.9 μg/mL				

Certified Density:

1.091

g/mL (measured at 20 ± 1° C)

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com tel: 800 669.6799 < 540.585.3030

fax: 540.585.3012

info@inorganiaventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

1-Feb-2014

2.0 DESCRIPTION OF CRM

Stock Solution

Catalog No.:

2007ICS-4

Lot Number:

F2-MEB423125

Matrix:

3% HNO3(v/v)

15,000 μg/mL ea:

Ca,

12,500 µg/mL ea:

Fe,

7,500 µg/mL ea:

Mg,

3,000 µg/mL ea:

ΑI,

2,500 µg/mL ea:

Na

3.0 CERTIFIED VALUES AND UNCERTAINTIES

CERTIFIED VALUE ELEMENT ELEMENT CERTIFIED VALUE ELEMENT CERTIFIED VALUE Aluminum, Al 3,012 ± 19 µg/mL Calcium, Ca 15,060.0 ± 100.0 µg/mL Iron, Fe 12,550.0 ± 80.0 µg/mL Magnesium, Mg 7,530.0 ± 50.0 µg/mL Sodium, Na 2,510 ± 17 µg/mL

Certified Density:

1.179

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}i$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

CERTIFICATE OF ANALYSI

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

lel: 800.669.6799 < 540.585.3030

tox. 540,585,3012

inforainorganieventures com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM** Stock Solution

Catalog No.:

6020ICS-0A

Lot Number:

Ca,

Τi

F2-MEB418129

Matrix:

1.4% HNO3(v/v)

1-Feb-2014

10,000 µg/mL ea:

Chloride.

2,000 µg/mL ea:

C,

Mo,

1,000 µg/mL ea:

20 µg/mL ea:

ΑI,

Fe,

Κ,

Mg,

Na,

Ρ,

S,

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Aluminum, A	.l 1,001 ± 7 μg/mL	Calcium, Ca	1,001 ± 7 μg/mL	Carbon, C	2,002 ± 13 μg/mL
Chloride, Ch	loride 10,010.0 ± 40.0 μg/mL	Iron, Fe	1,001 ± 5 μg/mL	Magnesium, Mg	1,001 ± 6 μg/mL
Molybdenun	, Mo 20.02 ± 0.15 μg/mL	Phosphorus, P	1,001 ± 6 μg/mL	Potassium, K	1,001 ± 6 μg/mL
Sodium, Na	1,001 ± 7 μg/mL	Sulfur, S	1,001 ± 7 μg/mL	Titanium, Ti	20.02 ± 0.13 μg/mL
		1		1	

Certified Density:

1.032 g/mL (measured at $20 \pm 1^{\circ}$ C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}i$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

IFICATE OF ANAL

tox: 540.585,3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 . USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM**

Stock Solution

Catalog No.:

6020ICS-0B

Lot Number:

F2-MEB415126

Matrix:

3% HNO3(v/v)

1-Feb-2014

2 µg/mL ea:

Ag,

As,

Co,

Cr3.

Cu,

Mn.

Ni.

Zn

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Arsenic, As	2.001 ± 0.013 μg/mL	Cadmium, Cd	2.001 ± 0.013 μg/mL	Chromium+3, Cr3	2.001 ± 0.013 μg/mL
Cobalt, Co	2.001 ± 0.013 μg/mL	Copper, Cu	2.001 ± 0.013 μg/mL	Manganese, Mn	2.001 ± 0.013 μg/mL
Nickel, Ni	2.001 ± 0.011 μg/mL	Silver, Ag	2.001 ± 0.013 μg/mL	Zinc, Zn	2.001 ± 0.011 μg/mL

Certified Density:

1.014 $^{\prime\prime}$ g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $2 \left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEBILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

^{· &}quot;Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

[·] This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

ERTIFICATE OF ANAL

tel: 800.669.6799 > 540 585 3030 fax: 540.585.3012

info@inorganiaventures.com

300 Technology Drive Christiansburg, VA 24073 ° USA inorganicventures.com

1.0 **INORGANIC VENTURES** is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM** Stock Solution

Catalog No.:

6020SPK-W

Lot Number:

F2-MEB422019

Matrix:

7% HNO3(v/v)

1-Feb-2014

100 μg/mL ea:

Fe,

50 µg/mL ea:

Ва,

Zn,

20 µg/mL ea:

Co,

Cr3,

Cu,

Mn,

Ni,

Sb,

V,

10 µg/mL ea:

As,

Pb,

5 µg/mL ea: Ag,

Be,

Cd,

Se,

Τi

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Antimony, Sb -	20.01 ± 0.09 μg/mL	Arsenic, As	10.00 ± 0.07 μg/mL	Barium, Ba	50.02 ± 0.34 μg/mL
Beryllium, Be	5.002 ± 0.035 μg/mL	Cadmium, Cd	4.998 ± 0.029 μg/mL	Chromium+3, Cr3	20.01 ± 0.14 μg/mL
Cobalt, Co	20.00 ± 0.13 μg/mL	Copper, Cu	20.00 ± 0.15 μg/mL	Iron, Fe	100.0 ± 0.7 μg/mL
Lead, Pb	10.00 ± 0.08 μg/mL	Manganese, Mn	20.00 ± 0.11 μg/mL	Nickel, Ni	20.00 ± 0.15 μg/mL
Selenium, Se	5.000 ± 0.035 μg/mL	Silver, Ag	5.000 ± 0.032 μg/mL	Thallium, TI	5.001 ± 0.033 μg/mL
Vanadium, V	20.00 ± 0.14 μg/mL	Zinc, Zn	49.98 ± 0.32 μg/mL		

Certified Density:

1.036 g/mL (measured at 20 \pm 1° C)

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

tel: 800.669.6799 - 540.585.3030 tax: 540.585.3012

info@inorganioventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

DESCRIPTION OF CRM 2.0

Stock Solution

Catalog No.:

6020SPK-W

Lot Number:

F2-MEB422019

Matrix:

7% HNO3(v/v)

Expires 1-Feb-2014

100 μg/mL ea:

Fe,

50 μg/mL ea:

Ва,

Zn,

20 μg/mL ea:

Co,

Cr3,

Mn,

Ni,

Sb,

٧,

10 μg/mL ea:

As, Pb,

5 μg/mL ea: Ag,

Ве,

Certified Density:

Cd,

Se,

Τi

1.036 g/mL (measured at 20 \pm 1° C)

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Cu,

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Antimony, Sb	20.01 ± 0.09 μg/mL	Arsenic, As	10.00 ± 0.07 μg/mL	Barium, Ba	50.02 ± 0.34 μg/mL
Beryllium, Be	5.002 ± 0.035 μg/mL	Cadmium, Cd	4.998 ± 0.029 μg/mL	Chromium+3, Cr3	20.01 ± 0.14 μg/mL
Cobalt, Co	20.00 ± 0.13 μg/mL	Copper, Cu	20.00 ± 0.15 μg/mL	Iron, Fe	100.0 ± 0.7 μg/mL
Lead, Pb	10.00 ± 0.08 μg/mL	Manganese, Mn	20.00 ± 0.11 μg/mL	Nickel, Ni	20.00 ± 0.15 μg/mL
Selenium, Se	5.000 ± 0.035 μg/mL	Silver, Ag	5.000 ± 0.032 μg/mL	Thallium, TI	5.001 ± 0.033 μg/mL
Vanadium, V	20.00 ± 0.14 μg/mL	Zinc, Zn	49.98 ± 0.32 μg/mL		

RTIFICATE OF ANALYSIS

tel: 800.669.5799 < 540.586.3030 fax: 540.586.3012

info@inorganioventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

Stock Second Source Solution

Catalog No.:

QCP-QCS-1

Lot Number:

F2-MEB437023

Matrix:

5% HNO3(v/v)

Expires 1-Feb-2014

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

500 μg/mL ea:

K,

TI,

200 µg/mL ea:

As,

Hg,

В,

Fe,

Zn,

Ρ,

Рb,

Li,

100 μg/mL ea:

AI, Cu, Ba,

Be, Mg, Ca,

Mn,

Cd, Na, Ce, Ni, Co, Se, Cr3, Sr,

V,

25 μg/mL ea:

Αg

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Aluminum, Al	99.9 ± 0.7 μg/mL	Arsenic, As	199.8 ± 1.3 μg/mL	Barium, Ba	99.9 ± 0. 7 μg/mL
Beryllium, Be	99.9 ± 0.7 μg/mL	Boron, B	99.9 ± 0.7 μg/mL	Cadmium, Cd	99.9 ± 0.5 μg/mL
Calcium, Ca	99.9 ± 0.6 μg/mL	Cerium, Ce	99.9 ± 0.7 μg/mL	Chromium+3, Cr3	99.9 ± 0.8 μg/mL
Cobalt, Co	99.9 ± 0.8 μg/mL	Copper, Cu	99.9 ± 0.5 μg/mL	Iron, Fe	99.9 ± 0.7 μg/mL
Lead, Pb	199.8 ± 1.5 μg/mL	Lithium, Li	99.9 ± 0.4 μg/mL	Magnesium, Mg	99.9 ± 0.7 μg/mL
Manganese, Mn	99.9 ± 0.6 μg/mL	Mercury, Hg	199.8 ± 0.8 μg/mL	Nickel, Ni	99.9 ± 0.5 μg/mL
Phosphorus, P	499.5 ± 2.6 μg/mL	Potassium, K	499.6 ± 3.2 μg/mL	Selenium, Se	99.9 ± 1.1 μg/mL
Silver, Ag	24.98 ± 0.16 μg/mL	Sodium, Na	99.9 ± 0.4 μg/mL	Strontium, Sr	99.9 ± 0.5 μg/mL
Thallium, Ti	499.5 ± 3.2 μg/mL	Vanadium, V	99.9 ± 0.5 μg/mL	Zinc, Zn	99.9 ± 0.6 μg/mL

Certified Density:

1.039

g/mL (measured at 20 ± 1° C)

tel: 800.669.6799 • 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

Christiansburg, VA 24073 • USA inorganicventures.com

1.0

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered

2.0 DESCRIPTION OF CRM

Laboratories."

Stock Second Source Solution

Catalog No.:

QCP-QCS-2

Lot Number:

F2-MEB405018

manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration

Matrix:

tr. HF.

5% HNO3(v/v)

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

500 μg/mL ea:

\$iO2,

Sn,

200 µg/mL ea:

Sb,

100 μg/mL ea:

Mo,

Τi

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Antimony, Sb	200.6 ± 0.9 μg/mL	Molybdenum, Mo	100.3 ± 0.7 μg/mL	Silica, SiO2	501.5 ± 2.2 μg/mL
Tin, Sn	501.5 ± 2.4 μg/mL	Titanium, Ti	100.3 ± 0.6 μg/mL		

Certified Density:

1.027

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $2 [(\Sigma s_i)^2]^{\frac{1}{2}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

tel: 800.669.6799 • 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

> INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the 1.0 Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM** Stock Second Source Solution

Catalog No.:

QCP-QCS-3

Lot Number:

F2-MEB419065

Matrix:

7% HNO3(v/v)

1-Feb-2014

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

50 µg/mL ea:

Se,

10 µg/mL ea:

Cr3, Cd, ΑI, As, Ва, Be, Ca, Co, Αg, Cu, Fe, K, Mn, Mo, Na, Ni, Рb, Mg, Sb, Th. TI. U, V, Zn

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Aluminum, Al	10.00 ± 0.05 μg/mL	Antimony, Sb	10.00 ± 0.06 μg/mL	Arsenic, As	10.00 ± 0.05 μg/mL
Barium, Ba	10.00 ± 0.05 μg/mL	Beryllium, Be	10.00 ± 0.06 μg/mL	Cadmium, Cd	10.00 ± 0.05 μg/mL
Calcium, Ca	10.00 ± 0.05 μg/mL	Chromium+3, Cr3	10.00 ± 0.08 μg/mL	Cobalt, Co	10.00 ± 0.05 μg/mL
Copper, Cu	10.00 ± 0.05 μg/mL	Iron, Fe	10.00 ± 0.05 μg/mL	Lead, Pb	10.00 ± 0.05 μg/mL
Magnesium, Mg	10.00 ± 0.05 μg/mL	Manganese, Mn	10.00 ± 0.07 μg/mL	Molybdenum, Mo	10.00 ± 0.08 μg/mL
Nickel, Ni	10.00 ± 0.05 μg/mL	Potassium, K	10.00 ± 0.05 μg/mL	Selenium, Se	50.01 ± 0.28 μg/mL
Silver, Ag	10.00 ± 0.06 μg/mL	Sodium, Na	10.00 ± 0.10 μg/mL	Thallium, Tl	10.00 ± 0.06 μg/mL
Thorium, Th	10.00 ± 0.05 μg/mL	Uranium, U	10.00 ± 0.06 μg/mL	Vanadium, V	10.00 ± 0.05 μg/mL
Zinc, Zn	10.00 ± 0.05 μg/mL				

Certified Density:

1.036 g/mL (measured at $20 \pm 1^{\circ}$ C)

RITERICATE OF ANALYSIS

tel: 800 669 6799 - 540,585,3030

fax: 540.585.3012

info@incroaniaventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

1-Feb-2014

2.0 DESCRIPTION OF CRM

Stock Second Source Solution

Catalog No.:

QCP-QCS-4

Lot Number:

F2-MEB416140

Matrix:

7% HNO3(v/v)

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

5 μg/mL ea:

Hg

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT

CERTIFIED VALUE

ELEMENT

CERTIFIED VALUE

ELEMENT

CERTIFIED VALUE

Mercury, Hg

5.001 ± 0.023 µg/mL

Certified Density:

1.034

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

(x̄) = mean

x_i= individual results

n = number of measurements

Uncertainty (±) = $2 \left[\Sigma(s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\left. \Sigma(s_i)^2 \right]^{\frac{1}{2}} =$ The square root of the sum of the squares of the most common errors (where's stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEBILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

RTIFICATE OF ANALYSIS

ter 300.659.6799 < 540.585.3030

fox: 540.585,3012

into@inorganioventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

Stock Solution

Catalog No .:

WW-LFS-1

Lot Number:

F2-MEB419068

Matrix:

5% HNO3(v/v)

Expires 1-Feb-2014

1,000 µg/mL ea:

K,

600 µg/mL ea:

Ρ,

300 μg/mL ea:

Fe,

200 μg/mL ea:

AI,

Ce,

Na,

Mg,

Se,

TI,

100 μg/mL ea:

Ca,

, Pb

80 μg/mL ea:

As,

70 μg/mL ea:

Hg,

50 µg/mL ea:

Ni,

40 μg/mL ea:

Cr3,

30 μg/mL ea:

В,

V,

20 µg/mL ea:

Ва,

Вe,

Cd,

Co,

Li,

Mn,

Sr,

Zn,

7.5 µg/mL ea:

Αg

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Aluminum, Al	200.0 ± 1.4 μg/mL	Arsenic, As	80.0 ± 0.5 μg/mL	Barium, Ba	20.00 ± 0.13 μg/mL
Beryllium, Be	20.00 ± 0.14 μg/mL	Boron, B	30.00 ± 0.20 μg/mL	Cadmium, Cd	20.01 ± 0.13 μg/mL
Calcium, Ca	100.0 ± 0.7 μg/mL	Cerium, Ce	200.0 ± 1.3 μg/mL	Chromium+3, Cr3	40.01 ± 0.28 μg/mL
Cobalt, Co	20.01 ± 0.13 μg/mL	Copper, Cu	30.00 ± 0.21 μg/mL	iron, Fe	300.1 ± 2.0 μg/mL
Lead, Pb	100.0 ± 0.8 μg/mL	Lithium, Li	20.00 ± 0.14 μg/mL	Magnesium, Mg	200.0 ± 1.3 μg/mL

tel: 300 659.6799 + 540.585.3030 fox: 640.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF	CRM	
--------------------	-----	--

Stock Solution

Catalog No.:

WW-LFS-1

Lot Number:

F2-MEB419068

Matrix:

5% HNO3(v/v)

1-Feb-2014

1,000 µg/mL ea:

600 μg/mL ea:

Ρ,

300 μg/mL ea:

Fe,

Na,

200 μg/mL ea:

ΑI,

Ce,

Mg,

Se.

TI,

100 μg/mL ea:

Ca,

Pb,

80 µg/mL ea:

As,

70 µg/mL ea:

Hg,

50 μg/mL ea:

Ni,

40 μg/mL ea:

Cr3,

30 µg/mL ea:

Cu,

V,

20 μg/mL ea:

Ва,

Ве,

Cd,

Co,

Li,

Mn,

Sr,

Zn,

7.5 µg/mL ea:

Αg

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Aluminum, Al	200.0 ± 1.4 μg/mL	Arsenic, As	$80.0 \pm 0.5 \mu \mathrm{g/mL}$	Barium, Ba	20.00 ± 0.13 μg/mL
Beryllium, Be	20.00 ± 0.14 μg/mL	Boron, B	$30.00 \pm 0.20 \ \mu g/mL$	Cadmium, Cd	20.01 ± 0.13 μg/mL
Calcium, Ca	100.0 ± 0.7 μg/mL	Cerium, Ce	200.0 ± 1.3 μg/mL	Chromium+3, Cr3	40.01 ± 0.28 μg/mL
Cobalt, Co	20.01 ± 0.13 μg/mL	Copper, Cu	30.00 ± 0.21 μg/mL	Iron, Fe	300.1 ± 2.0 μg/mL
Lead, Pb	100.0 ± 0.8 μg/mL	Lithium, Li	20.00 ± 0.14 μg/mL	Magnesium, Mg	200.0 ± 1.3 μg/mL

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

ERTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1-Feb-2014

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM**

Stock Solution

Catalog No.:

WW-LFS-2

Lot Number:

E2-MEB378055

Matrix:

tr. HF.

5% HNO3(v/v)

200 µg/mL ea:

SiO2,

80 µg/mL ea:

Sb.

70 µg/mL ea:

Sn,

40 µg/mL ea:

Mo,

20 µg/mL ea:

Τì

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Antimony, Sb	80.0 ± 0.6 μg/ml_	Molybdenum, Mo	40.00 ± 0.16 μg/mL	Silica, SiO2	200.0 ± 0.5 μg/mL
Tin, Sn	70.0 ± 0.4 µg/mL	Titanium. Ti	20.03 ± 0.10 µg/mL		

Certified Density:

1.025

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}i$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma s_i)]^2}{12}$

 Σs_i = The summation of all significant estimated errors (Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the NIST SRM certificate of analysis)

inorganicventures.com

CERTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

Stock Solution

Catalog No.:

WW-LFS-2

Lot Number:

E2-MEB378055

Matrix:

tr. HF.

5% HNO3(v/v)

Expires
1-Feb-2014

200 µg/mL ea:

SiO2.

80 µg/mL ea:

Sb,

70 µg/mL ea:

Sn,

40 μg/mL ea:

Μo,

20 μg/mL ea:

Ti

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Antimony, Sb	80.0 ± 0.6 μg/mL	Molybdenum, Mo	40.00 ± 0.16 μg/mL	Silica, SiO2	200.0 ± 0.5 μg/mL
Tin, Sn	70.0 ± 0.4 μg/mL	Titanium, Ti	20.03 ± 0.10 μg/mL		

Certified Density:

1.025

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{i} x_{i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2 \left[\left(\sum s_i \right)^2 \right]^{\frac{1}{2}}}{\left(n \right)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

tel: 300.669.6799 - 540.585.3030

Tax: 540.585.3010

into@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

WATER QC CERTIFIED REFERENCE MATERIAL Complex Nutrients

Catalog No: QCP-NUT-2

Lot Number: D2-NUT01114

Expires 1-Feb-2014

STABILITY AND STORAGE INFORMATION - This CRM can be stored at room temperature before opening. After opening and dilution, the EPA recommends that it be stored at 4 °C for no more than 48 hours for Phosphate as P.

SPECIFICATIONS AND TRACEABILITY:

Parameter	Certified Value	Made to Value	Analytical Method	NIST Traceability	Acceptance Limits
Total Kjeldahl Nitrogen as N ^(a)	9.00 ± 0.03 mg/L	9.00 mg/L	Calculated	SRM 141d	11.30 – 6.70 mg/L
Total Organic Phosphorus as P	1.984 ± 0.012 mg/L	2.00 mg/L	ICP	SRM 3139a	2.409 –1.559 mg/L

Values in the above table are after customer 1:200 v/v dilution.

(a) Total Kjeldahl Nitrogen as N tested by outside laboratory. The following results are listed for informational purposes only:

Test 1 = 9.6 mg/L

Test 2 = 8.7 mg/L

EPA method 351.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value (\bar{x}) = Σx_i

(≅) = mean

 $x_i = individual results$

n = number of measurements

Uncertainty (±) = $2[(\Sigma s_i)^2]^{1/2}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on

the NIST SRM certificate of analysis

ANALYZED DENSITY OF SOLUTION (measured at 21.5°C): 1.005 g/mL

TechLaw, Inc. Environmental Services Assistance Team 16194 W. 45th Drive, Golden, CO 80403 303-312-7721

Contract: EP-W-06-33

Certificates of Analysis Valid through January 2014

Anions by Ion Chromatography

TSS / TDS

Dissolved Organic Carbon

Alkalinity

- ➤ Initial Calibration Verification (ICV) Standards
- ➤ Laboratory Check Standards (LCS)
- Matrix Spike Solutions

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

Rec'd; 2012-03-30; tel: 800,669.6799 • 540,585,3030

fax: 540.585.3012

info@inorganicventures.com

Expi May 01,2013

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

WATER QC Reference Material Solids

Catalog No: QCP-SLD

Lot Number: E2-SLD02009

STABILITY AND STORAGE INFORMATION - This reference material can be stored at room temperature before and after opening. The EPA recommends a "maximum" holding time for solids samples of 7 days at 4 °C. Our stability data indicates that this standard should be disposed of in 3 months after opening.

SPECIFICATIONS AND TRACEABILITY:

Parameter	Certified Value	Made to Value	Analytical Method	NIST Traceability	Acceptance Limits
Filterable Residue	4821 ± 36 mg/L	4567 mg/L	Standard Methods 2540C	Gravimetric	5983 – 3658 mg/L
Non-filterable Residue	143.5 ± 0.8 mg/L	135 mg/L	Standard Methods 2540D	Gravimetric	153.4 – 133.6 mg/L
Total Residue	5018 ± 18 mg/L	4702 mg/L	Standard Methods 2540B	Gravimetric	6227 - 3809 mg/L

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\vec{x}) = \Sigma \underline{x_i}$

 $(\bar{x}) = mean$

 $x_i = individual results$

 x_n n = number of measurements

Uncertainty (±) = $2[(\Sigma s_i)^2]^{1/2}$

 $\Sigma s_{\text{i}} = \text{The summation of all significant estimated errors}$

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on

the NIST SRM certificate of analysis.)

tel: 800.669.6799 • 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

300 Technology Driv OCPLU'S MINERALS
Christiansburg, VA 24
inorganicventures.cc. 15387

Rec'd: 2012-03-30

Exp! May or, 2013

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

WATER QC REFERENCE MATERIAL Minerals

Catalog No: QCP-MIN

Lot Number: E2-MIN01123

STABILITY AND STORAGE INFORMATION - Do not put transfer devices, probes, etc. in sample container. The insertion of a pH electrode, for example, can significantly increase the conductivity, potassium, and chloride values. This standard can be stored at room temperature before opening. After opening, the EPA recommends a "maximum" holding time for the following:

Parameter	Holding Conditions	Holding Time
Alkalinity	4°C	14 days
Conductivity	4°C	28 days
Chloride	None required	28 days
Sulfate	4°C	28 days
Nitrate as N	4°C	48 hours
Fluoride	None required	28 days
Sodium	HNO₃ to pH<2	6 months
Potassium	HNO₃ to pH<2	6 months

SPECIFICATIONS AND TRACEABILITY:

*pH: The value listed below is for informational purposes only. The pH value of this CRM is not stable and cannot be relied upon. It can change up to 1 pH unit. For a certified pH CRM, use catalog no. QCP-PH.

Parameter	Certified Value	Made to Value	Analytical Method	NIST Traceability	Acceptance Limits
Alkalinity	115.19 ± 0.58 mg/L CaCO₃	110.075 mg/L	EPA Method 310.1	723d	122.71 - 107.66 mg/L CaCO ₃
Conductivity	1287 ± 7 μmhos/cm @ 25°C	Measured	EPA Method 120.1	999b	1421 – 1153 μmhos/cm @ 25°C
Chloride	200.24 ± 0.44 mg/L	200.21 mg/L	EPA Method 300.0	3182	215.05 - 185.43 mg/L
Fluoride	7.92 ± 0.04 mg/L	-8.00 mg/L	EPA Method 300.0	3183	8.54 – 7.30 mg/L
Sulfate	125.22 ± 0.75 mg/L	125.00 mg/L	EPA Method 300.0	3181	142.82 - 107.62 mg/L
Nitrate as N	8.80 ± 0.08 mg/L	9.00 mg/L	EPA Method 300.0	3185	10.54 – 7.05 mg/L
Sodium	202.31 ± 0.75 mg/L	203.01 mg/L	ICP	3152a	222.03 - 182.58 mg/L
Potassium	101.71 ± 1.63 mg/L	101.68 mg/L	ICP	3141a	116.10 – 87.32 mg/L
pН	9.21 units	Measured	4500-H ⁺ B	186g, 185h	*See parameters table above

Certificate of Analysis

Total Organic Carbon (TOC) Standard

(from KHP)

Catalog Number: IQC-106

Lot Number: M01122

Job Number: J00013787

Lot Issue Date: 10/24/2011

Expiration Date: 11/30/2013

This Certified Reference Material (CRM) was manufactured and verified in accordance with ULTRA's ISO 9001 registered quality system. The analyte concentrations were verified by our ISO 17025 accredited laboratory to be within ± 2.5%, when compared to calibration standards independently prepared using NIST SRM(s). The certified value and uncertainty value at the 95% confidence level for each analyte is determined gravimetrically.

Analyte	True Value			Analytical		NIST
					Method	SRM
total organic carbon (TOC)	1000	±	5	mg/L	TOC Analyzer	84K

Matrix: low TOC water (< 50 ppb)

ULTRA uses purified acids, 18 megohm double deionized water, calibrated Class A glassware & meticulously cleaned bottles in the manufacturing of ULTRAgrade standards. Balances used in the manufacturing of this standard are calibrated with weights traceable to NIST in compliance with ANSI/NCSL Z-540-1 and ISO 9001.

ISO 17025:2005 Accredited A2LA Cert. No. 0851.01 ISO 9001:2000 Registered TUV USA, Inc. Cert, No. 06-1004 William J. Leav Quality Assurance Manager

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

Exp: 2/2014

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001:2000 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

WATER QC REFERENCE MATERIAL Minerals

Catalog No. QCP-MIN

Lot Number: C2-MIN01121

STABILITY AND STORAGE INFORMATION - Do not put transfer devices, probes, etc. in sample container. The insertion of a pH electrode, for example, can significantly increase the conductivity, potassium, and chloride values. This standard can be stored at room temperature before opening. After opening, the EPA recommends a "maximum" holding time for the following:

PARAMETER	HOLDING CONDITIONS	HOLDING TIME
Alkalinity	4°C	14 days
Conductivity	4°C	28 days
Chloride	None required	28 days
Sulfate	4°C	28 days
Nitrate as N	4°C	48 hours
Fluoride	None required	28 days
Sodium	HNO ₃ to pH<2	6 months
Potassium	HNO₃ to pH<2	6 months

^{*}pH: The value listed below is for informational purposes only. The pH value of this CRM is not stable and cannot be relied upon. It can change up to 1 pH unit. For a certified pH CRM, use catalog no. QCP-PH.

SPECIFICATIONS AND TRACEABILITY:

Parameter 	Certified Value	Made to Value	Analytical Method	NIST Traceability	Acceptance Limits
Alkalinity Conductivity Chloride Fluoride Sulfate Nitrate as N Sodium Potassium pH	123.01 \pm 0.73 mg/L CaCO ₃ 1186 \pm 1 μ mhos/cm @ 25°C 192.211 \pm 1.601 mg/L 5.633 \pm 0.177 mg/L 113.542 \pm 2.974 mg/L 4.685 \pm 0.194 mg/L 193.904 \pm 6.657 mg/L 92.095 \pm 1.733 mg/L 9.18 units	123.7 mg/L Measured 198.0 mg/L 6.000 mg/L 120.0 mg/L 5.001 mg/L 242.7 mg/L 97.63 mg/L Measured	EPA Method 310.1 EPA Method 120.1 EPA Method 300.0 EPA Method 300.0 EPA Method 300.0 EPA Method 300.0 ICP ICP EPA Method 310.1	723d 999b 3182 3183 3154 3185 3152a 3141a 186g, 185h	$130.84 - 115.18 \mathrm{mg/L} \mathrm{CaCO_3}$ $1310 - 1062 \mu \mathrm{mhos/cm} @ 25 ^{\circ} \mathrm{C}$ $206.496 - 177.926 \mathrm{mg/L}$ $6.089 - 5.176 \mathrm{mg/L}$ $129.612 - 97.472 \mathrm{mg/L}$ $5.635 - 3.735 \mathrm{mg/L}$ $212.83 - 174.985 \mathrm{mg/L}$ $105.144 - 79.047 \mathrm{mg/L}$ *See parameters table above

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

tel: 800.669.6799 • 540.585.3030

fax: 540.585.3012

EXP! April 01, 2013

info@Inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

10000 µg/mL Phosphorus in H2O

Catalog Number:

CGP10-1, CGP10-2, and CGP10-5

Lot Number:

E2-P02035

Starting Material:

H3PO4

Starting Material Purity (%):

100.0000

Starting Material Lot No:

C23813

Matrix:

H2O.

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $10,064 \pm 55 \,\mu\text{g/mL}$ - weighted mean

Certified Density:

1.015 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{x} x_i$

 $(\bar{x}) = mean$

 x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(\Sigma s_i)^2]^{\frac{\gamma_a}{2}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

10,062 ± 39 µg/mL

ICP Assay NIST SRM 3139a Lot Number: 060717

Assay Method #2

 $10,070 \pm 22 \mu g/mL$

Acidimetric NIST SRM 84L Lot Number: 84L

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

Exp: 2/2014

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

WATER QC CERTIFIED REFERENCE MATERIAL Complex Nutrients

Catalog No: QCP-NUT-2

Lot Number: D2-NUT01115

STABILITY AND STORAGE INFORMATION - This CRM can be stored at room temperature before opening. After opening and dilution, the EPA recommends that it be stored at 4 °C for no more than 48 hours for Phosphate as P.

SPECIFICATIONS AND TRACEABILITY:

Parameter	Certified Value	Made to Value	Analytical Method	NIST Traceability	Acceptance Limits
Total Kjeldahl Nitrogen as N ^(a)	22.0 ± 0.10mg/L	22.0 mg/L	Calculated	SRM 141d	27.1 – 16.9 mg/L
Total Organic Phosphorus as P	9.493 ± 0.083 mg/L	9.499 mg/L	ICP	SRM 3139a	11.409 –7.578 mg/L

Values in the above table are after customer 1:200 v/v dilution.

Test 1 = 19.6 mg/L

Test 2 = 20.0 mg/L

EPA method 351.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\bar{x}) = \Sigma \underline{x}_i$

(⊼) = mean

n

 x_i = individual results

Uncertainty (±) $= 2[(\sum s_i)^2]^{1/2}$ (n) $= 2[(\sum s_i)^2]^{1/2}$ n = number of measurements

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on

the NIST SRM certificate of analysis

⁽a) Total Kjeldahl Nitrogen as N tested by outside laboratory. The following results are listed for informational purposes only:

195 Lehiah Avenue, Suite 4 takewood, New Jersey 08701 : USA incraanicventures.com

tel: 800.669.6799 - 732.901.1900

1.0 INORGANIC VENTURES is an ISO Guide 34:2000 registered Certified Reference Material (CRM) Manufacturer (Certificate #883-02). The certificate is designed and the data is determined in accordance with ISO Guide 31:2000 (Reference Materials-Contents of Certificates and Labels), ISO Guide 34:2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principals."

2.0 **DESCRIPTION OF CRM**

Stock Second Source Custom Solution

Catalog No.:

QCP-QCS-5

Lot Number:

B2-MEB255074

Matrix:

H20

Second Source: This solution was manufactured from a second set of concentrates maintained in our manufacturing facility.

75.00 µg/mL ea:

Sulfate,

50.00 µg/mL ea:

Bromide,

25.00 µg/mL ea:

oPhosph

ate_as_

15.00 μg/mL ea:

Chloride, Nitrite_a

s_N,

10.00 μg/mL ea:

Fluoride, Nitrate a

CERTIFIED VALUES AND UNCERTAINTIES 3.0

ELEMENT	CERTIFIED VALUE	ELEMENT CE	RTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Bromide, Bromide	50.20 ± 0.17 μg/mL	Chloride, Chloride	15.04 ± 0.03 μg/mL	Fluoride, Fluoride	10.04 ± 0.02 μg/mL
Nitrate_ as_ N, Nitrate_	as_N 10.01 ± 0.02 μg/mL	Nitrite_ as_ N, Nitrite_as_N	14.97 ± 0.05 μg/mL	o-Phosphate as P,	oPhosphate <u>2</u> 5s <u>0</u> 5°± 0.07 μg/mL
Sulfate, Sulfate	75.1 ± 0.2 μg/mL				

Certified Density:

0.998 g/mL (measured at 22° C)

The following equations are used in the calculation of the certified value and the uncertainty

Certified Value (•) = $\Sigma \underline{x}_i$

(•) = mean

 $x_i = individual results$

Uncertainty (±) = $2[(\Sigma s)]$

n = number of measurements

 Σs_i = The summation of all significant estimated errors (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.)

4.0 TRACEBILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1 ASSAY INFORMATION

ELEMENT	METHOD	NIST SRM#	SRM LOT#	ELEMENT	METHOD	NIST SRM#	SRM LOT#
Bromide	IC Assay	3184	020701	Bromide	Volhard	999a	999a
Chloride	IC Assay	3182	990506	Chloride	Volhard	999a	999a
Fluoride	Gravimetric		See Sec. 4.2	Fluoride	IC Assay	3183	991510
Nitrate_as_N	IC Assay	3185	991508	Nitrate_as_N	Gravimetric		See Sec. 4.2
Nitrite_as_N	Gravimetric		See Sec. 4.2	Nitrite_as_N	IC Assay	40h	40h
oPhosphate_a	_S IC Assay	3186	000330	oPhosphate_a	_S Gravimetric		See Sec. 4.2
P Sulfate	Gravimetric		See Sec. 4.2	P Sulfate	IC Assay	3154	892205

- 4.2 BALANCE CALIBRATION All balances are checked daily using an in-house procedure. The weights used for testing are annually compared to master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240.Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification
- **4.4 GLASSWARE CALIBRATION** An in-house procedure is used to calibrate all Class A Glassware used in the manufacturing and quality control of CRM's.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES IN $\mu g/mL$ - N/A 6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

HPLC, IC, TLC, ISE, IR, NMR, UV/VIS, MS, Capillary Eletrophoresis, Potentiometry, Wet Chemistry and Voltammetry For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact Technical Staff

This CRM was manufactured using 18 megohn doubly deionized water that has been filtered through a 0.2 micron filter.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep Tightly sealed when not in use. Store and use at 20 ± 4 °C. Do Not pipette from the container. Do Not return portions removed from pipetting to container.

Element Specific Information - For specific information regarding any element: Contact technical staff.

- **8.0 HAZARDOUS INFORMATION** Please refer to the enclosed Material Safety Data sheet for information regarding this CRM.
- **9.0 HOMOGENEITY** This solution was mixed according to in-house procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 10.2 ISO/IEC 17025:2005 "General Requirements for the Competence of Testing and Calibration"
 - Chemical Testing Accredited A2LA Certificate Number 883.01
- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies of chemically-stable solutions performed at the manufacturer's facility show a CRM shelf-life of twenty one months for solutions packaged in 125-mL low density polyethylene bottles. When stored under special environmental controls that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Manufacturer concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 05, 2008 Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: Angela Sinclair, Product Documentation

Administrator

Certificate Approved By: Katalin Le, QC Manager

Certifying Officer: Paul Gaines, PhD., Senior Technical Director

Engla Sinclair Katalin La Paul R Lainea

300 Technology Drive Christiansburg, VA 24073 - USA inorganicventures.com

EXP MA. 2014 CERTIFICATE OF ANALYSIS

tet; 800.669.6799 - 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the

Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration

Laboratories."

2.0 **DESCRIPTION OF CRM** Ion Chromatography 10000 µg/mL Nitrate as N in H2O

Catalog Number:

ICNNO310K

Lot Number:

D2-NOX02083MCA

Starting Material:

NaNO3

Starting Material Purity (%): 99.0000

Starting Material Lot No.:

1571

Matrix:

H20

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration: 10,206 ± 62 µg/mL

Certified Density:

1.038 g/mL (measured at $20 \pm 1^{\circ}$ C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2 [(\Sigma s_i)^2]^{\frac{1}{2}}}{(n)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement,

weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

· "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

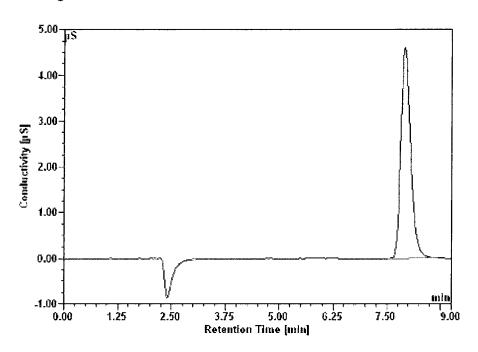
· This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $10,206 \pm 62 \mu g/mL$ (avg. of 2 runs)

IC Assay NIST SRM 3185 Lot Number: 050517


Assay Method #2

 $10,000 \pm 50 \,\mu g/mL$

Calculated NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All analytical balances are calibrated yearly by an A2LA accredited calibration laboratory and are traceable to a class E 2 analytical weight set with NIST Traceability. All balances are checked daily using an in-house procedure. The weights used for testing are annually compared to master weights and are traceable to the National Institute of Standards and Technology (NIST).
- **4.3 THERMOMETER CALIBRATION** All thermometers are NIST traceable through thermometers that are calibrated by an A2LA accredited calibration laboratory.
- 4.4 GLASSWARE CALIBRATION An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM's.

5.0 Chromatogram

Dionex ICS-1000 Ion Chromatograph

Analytical Column: IonPac AS22 4 x 250 mm Eluent: 4.5 mM Na2CO3/1.4 mM NaHCO3

Guard Column: IonPac AG22 4 x 50mm Eluent Flow Rate: 1.2 mL/min

Anion Self- ASRS 300 4mm Column Temp: N/A

Regenerating
Suppressor:
Cell Temp: 35 °C

Cation Self- N/A Scale X-Axis: minutes

Regenerating
Suppressor: Scale Y-Axis: 10 μS scale

Suppressor 31mA Concentration: 20.00 μg/g

Current:

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

HPLC, IC, TLC, ISE, IR, NMR, UV/VIS, MS, Capillary Electrophoresis, Potentiometry, Wet Chemistry and Voltammetry For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact Technical Staff

This CRM was manufactured using 18 megohm doubly deionized water that has been filtered through a 0.2 micron filter.

100

tel: 800.669.6799 - 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

Christiansburg, VA 24073 - USA inorganicventures.com CONTRACTOR CONTRACTOR CONTRACTOR

1.0

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Exp. Mar. 2014

2.0

DESCRIPTION OF CRM

Ion Chromatography 10,000 µg/mL Phosphate as P in H2O

Catalog Number:

ICPPO410K

Lot Number:

E2-POX01090MCA

Starting Material:

NH4H2PO4

Starting Material Purity (%):

99.9990

Starting Material Lot No .:

11026CH

Matrix:

H20

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration: 9,966 ± 44 µg/mL - no weighted mean

Certified Density:

1.019 g/mL (measured at $20 \pm 1^{\circ}$ C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $2[(\Sigma s_i)^2]^{\frac{1}{4}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

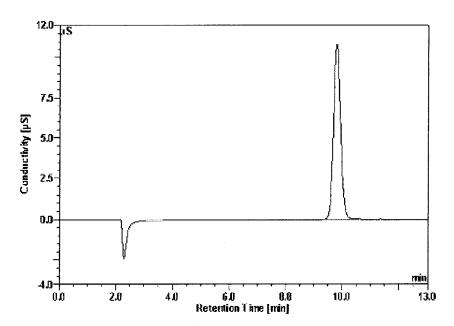
This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

9,966 ± 12 µg/mL

IC Assay NIST SRM 3186 Lot Number: 090723


Assay Method #2

10,010 ± 30 μg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All analytical balances are calibrated yearly by an A2LA accredited calibration laboratory and are traceable to a class E 2 analytical weight set with NIST Traceability. All balances are checked daily using an in-house procedure. The weights used for testing are annually compared to master weights and are traceable to the National Institute of Standards and Technology (NIST).
- 4.3 THERMOMETER CALIBRATION All thermometers are NIST traceable through thermometers that are calibrated by an A2LA accredited calibration laboratory.
- 4.4 GLASSWARE CALIBRATION An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM's.

5.0 Chromatogram

Dionex ICS-1000 Ion Chromatograph

Analytical Column:	IonPac AS22 4 x 250 mm	Eluent:	4.5 mM Na2CO3/1.4 mM NaHCO3
Guard Column:	IonPac AG22 4 x 50mm	Eluent Flow Rate:	1.2 mL/min

Anion Self-	ASRS 300 4mm	Column Temp:	N/A	
		•		

Regenerating	ASKS 500 411111	Column Temp.	IN/A
Suppressor:		Cell Temp:	35 °C

Cation Self-	N/A	Scale X-Axis:	minutes
Regenerating			

Suppressor:		Scale Y-Axis:	12 µS scale
Sunnressor	31m∆	Concentration:	~30 µg/g

ouppressor	JIIIA		
Current:			

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following: HPLC, IC, TLC, ISE, IR, NMR, UV/VIS, MS, Capillary Electrophoresis, Potentiometry, Wet Chemistry and Voltammetry For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact Technical Staff

This CRM was manufactured using 18 megohm doubly deionized water that has been filtered through a 0.2 micron filter.

Exp. Mar. 2014 CERTIFICATE OF ANALYSIS

145

tel: 800.669.6799 - 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

Christiansburg, VA 24073 - USA inorganic ventures.com

Page Andrews

1.0

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0

DESCRIPTION OF CRM

lon Chromatography 10000 µg/mL Nitrite as N in H2O

Catalog Number:

ICNNO210K

Lot Number:

D2-NOX02082MCA

Starting Material:

NaNO2

Starting Material Purity (%):

100.0000

Starting Material Lot No.:

1574

Matrix:

H20

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration: 10,316 ± 69 µg/mL

Certified Density:

1.038 g/mL (measured at $20 \pm 1^{\circ}$ C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

(x̄) = mean

x_i= individual results

n = number of measurements

Uncertainty (±) = $2[(\Sigma s_i)^2]^{\frac{1}{4}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

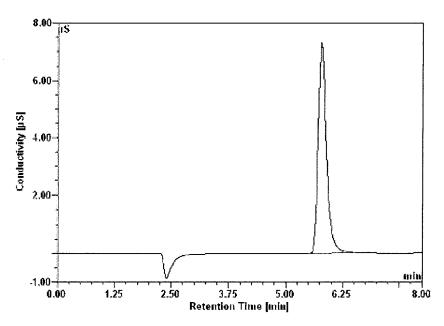
This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $10,316 \pm 69 \mu g/mL (avg. of 2 runs)$

IC Assay NIST SRM 40h Lot Number: 40h


Assay Method #2

10,372 ± 52 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

- **4.2 BALANCE CALIBRATION** All analytical balances are calibrated yearly by an A2LA accredited calibration laboratory and are traceable to a class E 2 analytical weight set with NIST Traceability. All balances are checked daily using an in-house procedure. The weights used for testing are annually compared to master weights and are traceable to the National Institute of Standards and Technology (NIST).
- **4.3 THERMOMETER CALIBRATION** All thermometers are NIST traceable through thermometers that are calibrated by an A2LA accredited calibration laboratory.
- **GLASSWARE CALIBRATION** An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM's.

5.0 Chromatogram

Dionex ICS-1000 Ion Chromatograph

 Analytical Column:
 IonPac AS22 4 x 250 mm
 Eluent:
 4.5 mM Na2CO3/1.4 mM NaHCO3

 Guard Column:
 IonPac AG22 4 x 50mm
 Eluent Flow Rate:
 1.2 mL/min

Anion Self- ASRS 300 4mm Column Temp: N/A Regenerating Suppressor: Cell Temp: 35 °C

Cation Self- N/A Scale X-Axis: minutes Regenerating

Suppressor: Scale Y-Axis: 8 µS scale

Suppressor 31mA Concentration: approx. 20 µg/g

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following: HPLC, IC, TLC, ISE, IR, NMR, UV/VIS, MS, Capillary Electrophoresis, Potentiometry, Wet Chemistry and Voltammetry For the validation of analytical methods
For the preparation of "working reference samples"
For interference studies and the determination of correction coefficients
For detection limit and linearity studies
For additional intended uses, contact Technical Staff

This CRM was manufactured using 18 megohm doubly deionized water that has been filtered through a 0.2 micron filter.

tel: 800.669.6799 - 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

Christiansburg, VA 24073 - USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration

2.0 DESCRIPTION OF CRM

Laboratories."

lon Chromatography 10,000 µg/mL Fluoride in H2O

Catalog Number:

ICF10K

Lot Number:

E2-F01059MCA

Starting Material:

NaF

Starting Material Purity (%):

44.8000

Starting Material Lot No.:

1655

Matrix:

H2O

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration: 10,084 ± 46 µg/mL

Certified Density:

1.021 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \underline{\sum x}_i$

 $(\bar{x}) = mean$

 x_i = individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\Sigma s_i)^2]^{\frac{1}{2}}}{(\Sigma s_i)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

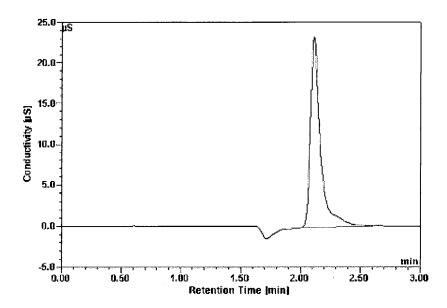
NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1


Assay Method #1

10,084 ± 17 µg/mL

IC Assay NIST SRM 3183 Lot Number: 050721

- 4.2 BALANCE CALIBRATION All analytical balances are calibrated yearly by an A2LA accredited calibration laboratory and are traceable to a class E 2 analytical weight set with NIST Traceability. All balances are checked daily using an in-house procedure. The weights used for testing are annually compared to master weights and are traceable to the National Institute of Standards and Technology (NIST).
- **4.3 THERMOMETER CALIBRATION** All thermometers are NIST traceable through thermometers that are calibrated by an A2LA accredited calibration laboratory.
- **GLASSWARE CALIBRATION** An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM's.

5.0 Chromatogram

Dionex DX-120 Ion Chromatograph

Analytical Column:	IonPac AS14 4 x 250mm	Eluent:	9mM Na2CO3
Guard Column:	IonPac AG14 4 x 50mm	Eluent Flow Rate:	1.2 mL/min
Anion Self-	ASRS 300 4mm	Column Temp:	N/A
Regenerating Suppressor:		Cell Temp:	35 °C
Cation Self- Regenerating	N/A	Scale X-Axis:	minutes
Suppressor:		Scale Y-Axis:	25 μS scale
Suppressor Current:	100mA	Concentration:	approx. 10 μg/g

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:
HPLC, IC, TLC, ISE, IR, NMR, UV/VIS, MS, Capillary Electrophoresis, Potentiometry, Wet Chemistry and Voltammetry
For the validation of analytical methods
For the preparation of "working reference samples"
For interference studies and the determination of correction coefficients
For detection limit and linearity studies
For additional intended uses, contact Technical Staff

This CRM was manufactured using 18 megohm doubly deionized water that has been filtered through a 0.2 micron filter.

11.141

tel: 800.669.6799 - 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

Christiansburg, VA 24073 - USA Inorganic ventures.com

Para Contraction Contraction Contraction

1.0

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Exp. Mr. 2014

2.0 **DESCRIPTION OF CRM** lon Chromatography 10,000 µg/mL Bromide IC in H2O

Catalog Number:

ICBR10K

Lot Number:

E2-BR01090MCA

Starting Material:

KBr

Starting Material Purity (%):

99.0000

Starting Material Lot No .:

09014BY

Matrix:

H20

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

10,070 ± 48 μg/mL - weighted mean

Certified Density:

1.009 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

(x̄) = mean

x_i= individual results

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

n = number of measurements 2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

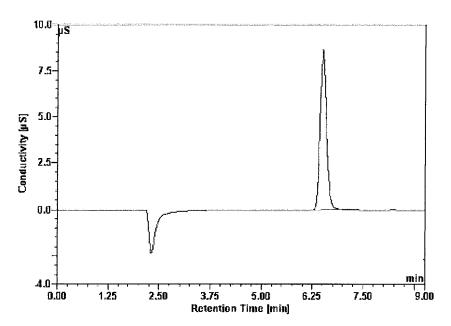
"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1 Assay Method #1

10,069 ± 14 µg/mL

IC Assay NIST SRM 3184 Lot Number: 020701


Assay Method #2

10,071 ± 21 µg/mL

Volhard NIST SRM 999b Lot Number: 999b

- 4.2 BALANCE CALIBRATION All analytical balances are calibrated yearly by an A2LA accredited calibration laboratory and are traceable to a class E 2 analytical weight set with NIST Traceability. All balances are checked daily using an in-house procedure. The weights used for testing are annually compared to master weights and are traceable to the National Institute of Standards and Technology (NIST).
- **4.3 THERMOMETER CALIBRATION** All thermometers are NIST traceable through thermometers that are calibrated by an A2LA accredited calibration laboratory.
- 4.4 GLASSWARE CALIBRATION An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM's.

5.0 Chromatogram

Dionex ICS-1000 Ion Chromatograph

Analytical Column:	IonPac AS22 4 x 250mm	Eluent:	4.5mM Na2CO3 / 1.4mM NaHCO3
Guard Column:	IonPac AG22 4 x 50mm	Eluent Flow Rate:	1.2 mL/min
Anion Self- Regenerating	ASRS 300 4mm	Column Temp:	N/A
Suppressor:		Cell Temp:	35 °C
Cation Self- Regenerating	N/A	Scale X-Axis:	minutes
Suppressor:		Scale Y-Axis:	10 μS scale
Suppressor	24 mA	Concentration:	approx. 10 μg/g

6.0 INTENDED USE

Suppressor

Current:

For the calibration of analytical instruments including but not limited to the following: HPLC, IC, ISE, IR, NMR, UV/VIS, MS, Capillary Electrophoresis, Potentiometry, Wet Chemistry and Voltammetry For the validation of analytical methods For the preparation of "working reference samples" For interference studies and the determination of correction coefficients For detection limit and linearity studies

For additional intended uses, contact Technical Staff

31mA

This CRM was manufactured using 18 megohm doubly deionized water that has been filtered through a 0.2 micron filter.

Ion Chromatography EPA Method 300.0 / SW-846 Method 9056

Analysis Date: <u>11/19/2013</u>

Analyst: Nick Philpot

TDF #: A-025 Project Name: 2013 NOV Waters Rico-Argentine LIMS #:C131107 Standards Traceability Documentation

otalidardo fraocability Boodillontation											
Vendor	Standard	LIMS ID #:	Expires	Purpose							
Inorganic Ventures	QCP-QCS-5	3020147	1-1-2014	ICV / LCS							
Inorganic Ventures	10,000 ppm Cl	3020148	1-1-2014	Calibration							
Inorganic Ventures	10,000 ppm NO ₂	3020151	1-1-2014	Calibration							
Inorganic Ventures	10,000 ppm Br	3020150	1-1-2014	Calibration							
Inorganic Ventures	10,000 ppm PO ₄	3020153	1-1-2014	Calibration							
Inorganic Ventures	10,000 ppm Fl	3020149	1-1-2014	Calibration							
Inorganic Ventures	10,000 ppm SO ₄	3020154	1-1-2014	Calibration							
Inorganic Ventures	10,000 ppm NO ₃	3020152	1-1-2014	Calibration							
ESAT	Cl + SO ₄ + F	3030401	1-1-2014	Spike							

Calibration Standards

Cal Stock LIMS ID #: 3022102 Prepared: 02/01/2013

Exp: 02/01/2014

Name	F mg/L	Cl ⁻ mg/L	Br ⁻ mg/L	NO ₂ -N g/L	NO ₃ -N mg/L	PO ₄ mg/L	SO ₄ mg/L
Stock	20	200	50	50	50	20	500
Std. 1	0.2	2	0.5	0.5	0.5	0.2	5.0
Std. 2	0.4	4	1	1	1	0.4	10
Std. 3	1	10	2.5	2.5	2.5	1	25
Std. 4	4	40	10	10	10	4	100
Std. 5	10	100	25	25	25	10	250

Instrument Analysis Parameters

Column Press: Approx	<u> 1850 </u>	uent Cond: approx 0.00	_Eluent Prep. Date:	11/19/2013
	Cal. Date:	_11/19/2013_	Cal. By: <u>NP</u>	· · · · · · · · · · · · · · · · · · ·

Analytical Run Information

CCV LIMS ID #:	3022101	Prepared: 02-01-2013	Ехр:	prepared as needed
	10			
		mL Spike: <u>varies</u>		

Analytical Batch ID: <u>1311056</u>		
Sequence ID: <u>1311068</u>		
	Jpload By: <u>NP</u>	-
Peer Review Date: 12/11/3	Bv:	51/

ANALYSIS SEQUENCE

1311068

Printed: 11/20/2013 11:43:09AM ESAT Dionex IC Sequence Date: 11/20/13 11:41 Instrument: Dilut. **Comments** Lab Number Factor **Analysis** STD ID Sample/Std Name **EPA Tag ID Source Sple** 1311068-ICV1 QC 3022101 Initial Cal Check 1311068-ICB1 QC Initial Cal Blank 1311068-SCV1 QC 3020147 Secondary Cal Check -1311068-IBL1 QC Instrument Blank 1311056-BS1 QC LCS 1311056-BLK1 QC Blank 1311056-DUP1 QC Duplicate C131107-03 1311056-MS1 QC Matrix Spike C131107-03 C131107-03 nions by Ion Chromatograpl CHV-101U 8-C C131107-06 nions by Ion Chromatograpl DR-1 8-C C131107-11 nions by Ion Chromatograpl DR-3 8-C C131107-18 nions by Ion Chromatograpl DR-6 8-C 1311068-CCV1 QC 3022101 Calibration Check 1311068-CCB1 QC Calibration Blank C131107-21 nions by Ion Chromatograph DR-7 8-C C131107-24 MW-109S nions by Ion Chromatograpl 8-C C131107-27 nions by Ion Chromatograp MW-110 8-C 1311068-CCV2 3022101 Calibration Check QC 1311068-CCB2 QC Calibration Blank

PREPARATION BENCH SHEET

1311056

Matrix: Water

TechLaw, Inc. - ESAT Region 8

Prepared using: WETCHEM - No Prep Req

Printed: 11/18/2013 9:11:29AM

Date Prepared:	Pate Prepared: 11/18/13 09:10 By: NP Prepared using: WETCHEM - No Prep Req										
Lab Number	Analysis	EPA Tag ID	Initial (mL)	Final (mL)	Spike1 ID	ul Spike1	Spike2 ID	ul Spike2	Source ID	QC Code	Extraction Comments
1311056-BLK1	QC		. 10	10						Blank	
1311056-BS1	QC		10	10	3030401	100				LCS	
1311056-DUP1	QC		10	10					C131107-03	Duplicate	
1311056-MS1	QC		10	10	3030401	100			C131107-03	Matrix Spike	
C131107-03 A	nions by Ion Chromatograph	8-C	10	10						CHV-101U	(0 x
C131107-06 A	nions by Ion Chromatograph	8-C	10	10						DR-1	
C131107-11 A	nions by Ion Chromatograph	8-C	10	10						DR-3	/0 x
C131107-18 A	nions by Ion Chromatograph	8-C	10	10						DR-6	(9 X
C131107-21 A	nions by Ion Chromatograph	8-C	10	10						DR-7	
C131107-24 A	nions by Ion Chromatograph	8-C	10	10						MW-109S	10 %
C131107-27 A	nions by Ion Chromatograph	8-C	10	10						MW-110	10 x

A-025

Sequence:

1311056_C131107_NP

Operator: US

US ENVIRONMENTAL PRO

Page 1 of 2 Printed: 11/20/2013 9:25:30 AM

Title: Right Sequence

Datasource:

D9VVZ191_local

Location:

Right_system\Sequences and Data\2013 ESAT

Timebase:

Right_system

Created:

11/18/2013 12:05:00 PM by US ENVIRONMENTAL PRO

#Samples:

26

Last Update:

11/20/2013 9:20:52 AM by US ENVIRONMENTAL PRO

No.	Pos.	Nar	me	Dil.	Factor	Туре	Inj. Date/Time	lnj.	Vol.	Status	Method
1	1	?	Std 0		1.0000	Unknown	11/19/2013 4:47:25 PM		25.0	Finished	Met Anions Rt
2	2	$\overline{\Omega}$	Std 1		1.0000	Standard	11/19/2013 5:05:30 PM		25.0	Finished	Met Anions Rt
3	3		Std 2		1.0000	Standard	11/19/2013 5:23:35 PM		25.0	Finished	Met Anions Rt
4	4	囧	Std 3		1.0000	Standard	11/19/2013 5:41:39 PM		25.0	Finished	Met Anions Rt
5	5		Std 4		1.0000	Standard	11/19/2013 5:59:42 PM		25.0	Finished	Met Anions Rt
6	6		Std 5		1.0000	Standard	11/19/2013 6:17:47 PM		25.0	Finished	Met Anions Rt
7	5	7	SEQ-ICV1		1.0000	Unknown	11/19/2013 6:35:51 PM		25.0	Finished	Met Anions Rt
8	1	3	SEQ-ICB1		1.0000	Unknown	11/19/2013 6:53:55 PM		25.0	Finished	Met Anions Rt
9	7	?	SEQ-SCV1		1.0000	Unknown	11/19/2013 7:12:00 PM		25.0	Finished	Met Anions Rt
10	1	?	SEQ-IBL1		1.0000	Unknown	11/19/2013 7:30:05 PM		25.0	Finished	Met Anions Rt
11	8	3	1311056-BS1		1.0000	Unknown	11/19/2013 7:48:09 PM		25.0	Finished	Met Anions Rt
12	9	7	1311056-BLK1		1.0000	Unknown	11/19/2013 8:06:14 PM		25.0	Finished	Met Anions Rt
13	10	7	C131107-03 @10x		1.0000	Unknown	11/19/2013 8:24:19 PM		25.0	Finished	Met Anions Rt
14	11	7	1311056-DUP1 @10x		1.0000	Unknown	11/19/2013 8:42:24 PM	:	25.0	Finished	Met Anions Rt
15	12	7	1311056-MS1 @10x		1.0000	Unknown	11/19/2013 9:00:29 PM		25.0	Finished	Met Anions Rt
16	13	7	C131107-06		1.0000	Unknown	11/19/2013 9:18:33 PM		25.0	Finished	Met Anions Rt
17	14	7	C131107-11 @10x		1.0000	Unknown	11/19/2013 9:36:38 PM		25.0	Finished	Met Anions Rt
18	15	7	C131107-18 @10x		1.0000	Unknown	11/19/2013 9:54:42 PM		25.0	Finished	Met Anions Rt
19	5	?	SEQ-CCV		1.0000	Unknown	11/19/2013 10:12:47 PM	:	25.0	Finished	Met Anions Rt
20	1	7	SEQ-CCB		1.0000	Unknown	11/19/2013 10:30:51 PM	:	25.0	Finished	Met Anions Rt
21	16	7	C131107-21		1.0000	Unknown	11/19/2013 10:48:56 PM	:	25.0	Finished	Met Anions Rt
22	17	7	C131107-24 @10x		1.0000	Unknown	11/19/2013 11:07:00 PM	:	25.0	Finished	Met Anions Rt
23	18	7	C131107-27 @10x		1.0000	Unknown	11/19/2013 11:25:04 PM	:	25.0	Finished	Met Anions Rt
24	5	7	SEQ-CCV		1.0000	Unknown	11/19/2013 11:43:09 PM	:	25.0	Finished	Met Anions Rt
25	1	7	SEQ-CCB		1.0000	Unknown	11/20/2013 12:01:14 AM	:	25.0	Finished	Met Anions Rt
26	1	3	STOP		1.0000	Unknown	11/20/2013 12:16:50 AM	:	25.0	Finished	Met Anions Rt

ANION SUMMARY REPORT

No.	Name	Time min Fluoride ECD_1	Area μS*min Fluoride ECD_1	Rel.Area % Fluoride ECD_1	Height µS Fluoride ECD_1	Rel.Height % Fluoride ECD_1	Amount mg/L Fluoride ECD_1
1	Std 0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Std 1	3.663	0.0587	3.52	0.33	5.37	0.2198
3	Std 2	3.663	0.1130	3.37	0.65	5.29	0.4024
4	Std 3	3.670	0.2834	3.29	1.64	5.09	0.9702
5	Std 4	3.663	1.2354	2.98	7.31	4.53	4.0086
6	Std 5	3.647	3.3109	2.87	19.45	4.47	9.9990
7	SEQ-ICV1	3.653	1.2339	2.97	7.32	4.53	4.0041
8	SEQ-ICB1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	SEQ-SCV1	3.653	3.4368	7.92	20.99	13.05	10.3395
10	SEQ-IBL1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	1311056-BS1	3.653	1.6420	6.93	9.72	9.69	5.2445
12	1311056-BLK1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	C131107-03 @10x	3.650	0.0574	0.52	0.33	1.15	0.2155
14	1311056-DUP1 @10x	3.663	0.0588	0.53	0.33	1.17	0.2200
15	1311056-MS1 @10x	3.653	1.6295	4.82	9.58	7.68	5.2069
16	C131107-06	3.657	0.0319	0.62	0.18	1.37	0.1294
17	C131107-11 @10x	3.660	0.0677	0.65	0.38	1.44	0.2499
18	C131107-18 @10x	3.650	0.0716	0.64	0.39	1.37	0.2632
19	SEQ-CCV	3.653	1.2361	2.96	7.26	4.56	4.0107
20	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	C131107-21	3.653	0.1009	0.57	0.52	1.13	0.3618
22	C131107-24 @10x	3.653	0.0590	0.34	0.28	0.63	0.2208
23	C131107-27 @10x	3.657	0.0713	0.78	0.41	1.75	0.2621
24	SEQ-CCV	3.650	1.2389	2.95	7.31	4.56	4.0193
25	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	STOP	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Sum:	69.467	15.937	49.239	94.370	78.844	50.348
	Average:	3.656	0.839	2.592	4.967	4.150	2.650
	Rel.Std.Dev:	0.167 %	128.774 %	84.890 %	130.292 %	79.296 %	123.914 %

No.	Name	Time min Chloride ECD_1	Area μS*min Chloride ECD_1	Rel.Area % Chloride ECD_1	Height μS Chloride ECD_1	Rel.Height % Chloride ECD_1	Amount mg/L Chloride ECD_1
1	Std 0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Std 1	5.33	0.394	23.56	2.092	34.13	2.4838
3	Std 2	5.32	0.797	23.73	4.240	34.39	4.1272
4	Std 3	5.34	2.057	23.89	11.390	35.28	9.1933
5	Std 4	5.35	10.343	24.93	60.460	37.45	40.2176
6	Std 5	5.37	29.054	25.18	167.321	38.43	99.9770
7	SEQ-ICV1	5.33	10.371	24.96	60.571	37.51	40.3146
8	SEQ-ICB1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

11/20/2013 9:25 AM

9	SEQ-SCV1	5.31	3.375	7.78	18.477	11.49	14.3807
10	SEQ-IBL1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- 11	1311056-BS1	5.31	5.996	25.29	34.025	33.95	24.3970
12	1311056-BLK1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	C131107-03 @10x	5.29	0.017	0.16	0.089	0.31	0.9405
14	1311056-DUP1 @10x	5.31	0.017	0.15	0.090	0.32	0.9389
15	1311056-MS1 @10x	5.32	5.794	17.15	32.598	26.16	23.6406
16	C131107-06	5.30	0.194	3.80	1.002	7.59	1.6668
17	C131107-11 @10x	5.31	0.007	0.06	0.032	0.12	0.8961
18	C131107-18 @10x	5.30	0.007	0.06	0.037	0.13	0.8981
19	SEQ-CCV	5.32	10.410	24.95	59.877	37.61	40.4542
20	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	C131107-21	5.30	0.227	1.29	1.160	2.52	1.8022
22	C131107-24 @10x	5.30	0.035	0.20	0.177	0.40	1.0114
23	C131107-27 @10x	5.31	0.031	0.34	0.154	0.67	0.9954
24	SEQ-CCV	5.32	10.473	24.98	60.390	37.66	40.6746
25	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	STOP	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Sum:	101.037	89.598	252.464	514.182	376.144	349.010
	Average:	5.318	4.716	13.288	27.062	19.797	18.369
	Rel.Std.Dev:	0.343 %	153.263 %	88.163 %	154.223 %	86.679 %	138.189 %

No.	Name	Time min Nitrite	Area µS*min Nitrite	Rel.Area % Nitrite	Height µS Nitrite	Rel.Height % Nitrite	Amount mg/L Nitrite
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Std 0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Std 1	6.403	0.218	13.042	0.966	15.761	0.580
3	Std 2	6.397	0.436	12.981	1.911	15.504	1.019
4	Std 3	6.413	1.107	12.856	4.863	15.065	2.366
5	Std 4	6.407	4.995	12.038	22.084	13.680	10.040
6	Std 5	6.400	12.883	11.163	55.999	12.862	24.995
7	SEQ-ICV1	6.383	4.978	11.983	22.110	13.694	10.008
8	SEQ-ICB1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	SEQ-SCV1	6.390	7.528	17.344	32.816	20.406	14.929
10	SEQ-IBL1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	1311056-BS1	6.380	4.933	20.810	21.688	21.642	9.920
12	1311056-BLK1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	C131107-03 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	1311056-DUP1 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	1311056-MS1 @10x	6.383	4.813	14.248	21.013	16.863	9.685
16	C131107-06	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	C131107-11 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	C131107-18 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	SEQ-CCV	6.380	4.988	11.956	21.838	13.718	10.027
20	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	C131107-21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

11/20/2013 9:25 AM

22	C131107-24 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	C131107-27 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	SEQ-CCV	6.377	5.010	11.949	21.963	13.697	10.070
25	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	STOP	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Sum:	70.313	51.888	150.369	227.252	172.892	103.638
	Average:	6.392	4.717	13.670	20.659	15.717	9.422
	Rel.Std.Dev:	0.195 %	75.412 %	21.206 %	74.893 %	18.368 %	73.016 %

No.	Name	Time	Area	Rel.Area	Height	Rel.Height	Amount
		min	μS*min	%	μS	%	mg/L
		Bromide	Bromide	Bromide	Bromide	Bromide	Bromide
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Std 0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Std 1	7.693	0.042	2.510	0.168	2.737	0.519
3	Std 2	7.687	0.085	2.537	0.333	2.705	1.037
4	Std 3	7.703	0.202	2.349	0.813	2.518	2.428
5	Std 4	7.670	0.866	2.088	3.511	2.175	10.019
6	Std 5	7.630	2.299	1.992	9.560	2.196	24.998
7	SEQ-ICV1	7.637	0.868	2.090	3.516	2.178	10.042
8	SEQ-ICB1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	SEQ-SCV1	7.643	5.047	11.627	20.625	12.825	49.960
10	SEQ-IBL1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	1311056-BS1	7.637	0.855	3.608	3.416	3.409	9.897
12	1311056-BLK1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	C131107-03 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	1311056-DUP1 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	1311056-MS1 @10x	7.640	0.827	2.448	3.278	2.630	9.584
16	C131107-06	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	C131107-11 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	C131107-18 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	SEQ-CCV	7.633	0.873	2.092	3.470	2.180	10.092
20	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	C131107-21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	C131107-24 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	C131107-27 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	SEQ-CCV	7.637	0.877	2.092	3.489	2.176	10.142
25	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	STOP	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Sum:	84.210	12.842	35.433	52.179	37.728	138.717
	Average:	7.655	1.167	3.221	4.744	3.430	12.611
	Rel.Std.Dev:	0.358 %	121.931 %	87.676 %	123.177 %	91.530 %	111.429 %

No.	Name	Time	Area	Rel.Area	Height	Rel.Height	Amount
		min	μS*min	%	μS	%	mg/L
		Nitrate	Nitrate	Nitrate	Nitrate	Nitrate	Nitrate

11/20/2013 9:25 AM

		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Std 0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Std 1	8.623	0.222	13.296	0.792	12.919	0.564
3	Std 2	8.613	0.438	13.039	1.566	12.703	1.011
4	Std 3	8.623	1.121	13.013	3.971	12.302	2.401
5	Std 4	8.570	5.218	12.576	18.721	11.596	10.026
6	Std 5	8.500	14.987	12.987	52.275	12.007	24.997
7	SEQ-ICV1	8.537	5.231	12.590	18.746	11.611	10.048
8	SEQ-ICB1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	SEQ-SCV1	8.557	5.632	12.975	19.561	12.164	10.740
10	SEQ-IBL1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	1311056-BS1	8.533	5.635	23.771	19.949	19.906	10.746
12	1311056-BLK1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	C131107-03 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	1311056-DUP1 @10x	8.583	0.004	0.035	0.015	0.053	0.107
15	1311056-MS1 @10x	8.540	5.472	16.199	19.255	15.452	10.465
16	C131107-06	8.600	0.023	0.459	0.081	0.610	0.148
17	C131107-11 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	C131107-18 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	SEQ-CCV	8.530	5.255	12.597	18.497	11.619	10.091
20	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	C131107-21	8.593	0.020	0.113	0.067	0.146	0.141
22	C131107-24 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	C131107-27 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	SEQ-CCV	8.533	5.282	12,597	18.602	11.601	10.136
25	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	STOP	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Sum:	119.937	54.538	156.246	192.098	144.689	101.622
	Average:	8.567	3.896	11.160	13.721	10.335	7.259
	Rel.Std.Dev:	0.463 %	104.913 %	59.388 %	104.193 %	56.971 %	96.721 %

No.	Name	Time min Phosphate ECD_1	Area μS*min Phosphate ECD_1	Rel.Area % Phosphate ECD_1	Height μS Phosphate ECD_1	Rel.Height % Phosphate ECD_1	Amount mg/L Phosphate ECD_1
1	Std 0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Std 1	11.673	0.015	0.915	0.043	0.705	0.212
3	Std 2	11.627	0.049	1.465	0.123	0.999	0.425
4	Std 3	11.640	0.134	1.553	0.340	1.054	0.951
5	Std 4	11.620	0.644	1.553	1.607	0.995	4.012
6	Std 5	11.587	1.734	1.503	4.432	1.018	9.999
7	SEQ-ICV1	11.603	0.639	1.538	1.597	0.989	3.981
8	SEQ-ICB1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	SEQ-SCV1	11.590	5.032	11.592	13.327	8.287	25.129
10	SEQ-IBL1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	1311056-BS1	11.603	0.813	3.428	2.022	2.017	4.982

11/20/2013 9:25 AM

12	1311056-BLK1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	C131107-03 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	1311056-DUP1 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	1311056-MS1 @10x	11.607	0.723	2.139	1.725	1.384	4.465
16	C131107-06	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	C131107-11 @10x	n.a.	n.a.	n.a.	n.a. n.a.		n.a.
18	C131107-18 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- 19	SEQ-CCV	11.593	0.633	1.517	1.545	0.970	3.946
20	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	C131107-21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	C131107-24 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	C131107-27 @10x	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	SEQ-CCV	11.580	0.628	1.499	1.541	0.961	3.919
25	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	STOP	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Sum:	127.723	11.044	28.702	28.303	19.381	62.023
	Average:	11.611	1.004	2.609	2.573	1.762	5.638
	Rel.Std.Dev:	0.236 %	141.070 %	116.749 %	146.213 %	124.343 %	124.213 %

No.	Name	Time min Sulfate ECD_1	Area μS*min Sulfate ECD_1	Rel.Area % Sulfate ECD 1	Height μS Sulfate ECD_1	Rel.Height % Sulfate ECD_1	Amount mg/L Sulfate ECD_1
1	Std 0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Std 1	13.223	0.721	43.160	1.739	28.373	6.073
3	Std 2	13.220	1.440	42.882	3.502	28.408	10.254
 4	Std 3	13.243	3.707	43.048	9.259	28.683	23.248
_	Std 4	13.320	18.190	43.839	47,749	29.577	100,473
 6	Std 5	13.430	51.133	44.309	126.348	29.020	249.950
	SEQ-ICV1	13.310	18,225	43.867	47.597	29.479	100.649
 8	SEQ-ICB1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	SEQ-SCV1	13.303	13.355	30.769	35.016	21.774	75.699
10	SEQ-IBL1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	1311056-BS1	13.233	3.831	16.162	9.397	9.378	23.953
12	1311056-BLK1	n.a.	n.a.	n.a.	n.a.	4 р. а.	n.a.
13	C131107-03 @10x	13.260	10.965	99.323	27.812	98.532	63.102
14	1311056-DUP1 @10x	13.263	10.998	99.282	27.853	98.462	63.276
15	1311056-MS1 @10x	13.287	14.520	42.987	37.167	29.826	81.754
16	C131107-06	13.237	4.860	95.119	11.935	90.427	29.752
17	C131107-11 @10x	13.263	10.363	99.289	26.040	98.442	59.890
18	C131107-18 @10x	13.253	11.052	99.294	27.826	98.499	63.566
19	SEQ-CCV	13.293	18.325	43.923	46.706	29.339	101.153
20	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	C131107-21	13.293	17.257	98.024	44.292	96.208	95.763
22	C131107-24 @10x	13.290	17.254	99.461	44.219	98.971	95.750
23	C131107-27 @10x	13.240	8.982	98.878	22.568	97.580	52.460

11/20/2013 9:25 AM

24	SEQ-CCV	13.270	18.419	43.930	47.052	29.344	101.627
25	SEQ-CCB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	STOP	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Sum:	252.233	253.597	1,227.546	644.076	1,070.323	1,398.391
	Average:	13.275	13.347	64.608	33.899	56.333	73.600
	Rel.Std.Dev:	0.360 %	82.046 %	47.195 %	80.604 %	64.068 %	72.746 %

Page 1 of 28 11/20/2013 9:26 AM

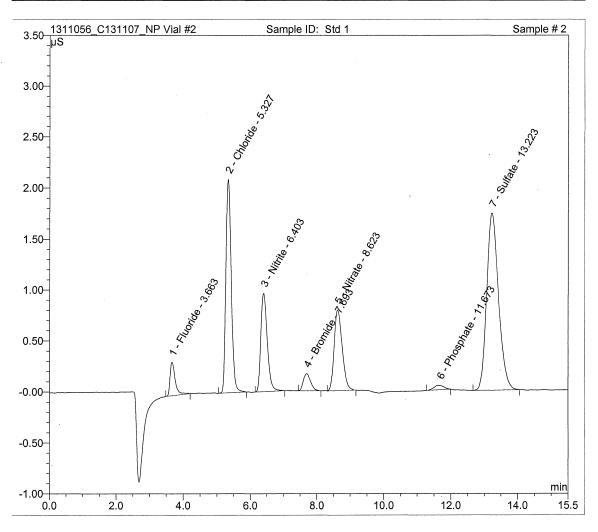
 Sample Name:
 Std 0
 Inj. Vol.:
 25.0

 Sample Type:
 unknown
 Dilution Factor:
 1.0000

 Program:
 Program Anions Right
 Vial #:
 1

 Inj. Date/Time:
 11.19.13
 16:47
 Run Number:
 1

No.	Time	Peak Name	Type	Area	Height	Amount
	min			μS*min	μS	mg/L


 Sample Name:
 Std 1
 Inj. Vol.:
 25.0

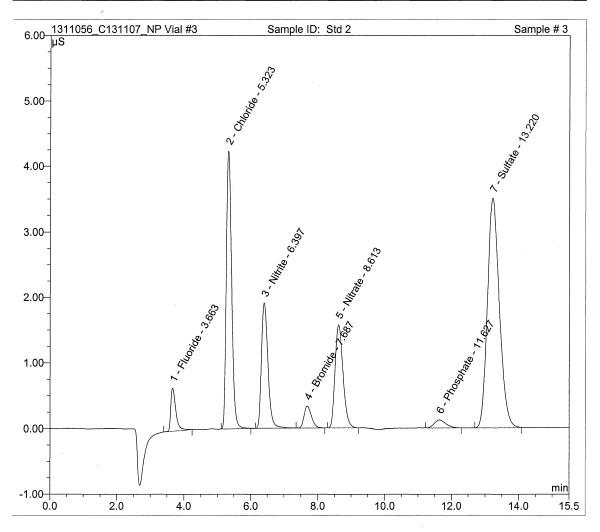
 Sample Type:
 standard
 Dilution Factor:
 1.0000

 Program:
 Program Anions Right
 Vial #:
 2

 Inj. Date/Time:
 11.19.13 17:05
 Run Number:
 2

No.	Time min	Peak Name	Type	Area μS*min	Height µS	Amount mg/L
1	3.66	Fluoride	вмв	0.059	0.329	0.2198
2	5.33	Chloride	вмв	0.394	2.092	2.4838
3	6.40	Nitrite	вмв	0.218	0.966	0.5801
4	7.69	Bromide	вмв	0.042	0.168	0.5190
5	8.62	Nitrate	вмв	0.222	0.792	0.5640
6	11.67	Phosphate	вмв	0.015	0.043	0.2125
7	13.22	Sulfate	вмв	0.721	1.739	6.0728

Page 3 of 28 11/20/2013 9:26 AM


 Sample Name:
 Std 2
 Inj. Vol.:
 25.0

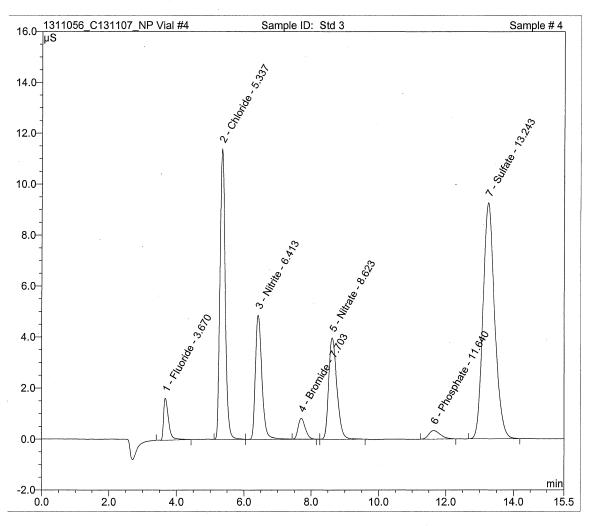
 Sample Type:
 standard
 Dilution Factor:
 1.0000

 Program:
 Program Anions Right
 Vial #:
 3

 Inj. Date/Time:
 11.19.13 17:23
 Run Number:
 3

No.	Time min	Peak Name	Type	Area µS*min	Height µS	Amount mg/L
1	3.66	Fluoride	вмв	0.113	0.652	0.4024
2	5.32	Chloride	вмв	0.797	4.240	4.1272
3	6.40	Nitrite	вмв	0.436	1.911	1.0191
4	7.69	Bromide	Rd	0.085	0.333	1.0369
5	8.61	Nitrate	_a BMB	0.438	1.566	1.0115
6	11.63	Phosphate	ВМВ	0.049	0.123	0.4251
7	13.22	Sulfate	вмв	1.440	3.502	10.2537

Page 4 of 28 11/20/2013 9:26 AM


 Sample Name:
 Std 3
 Inj. Vol.:
 25.0

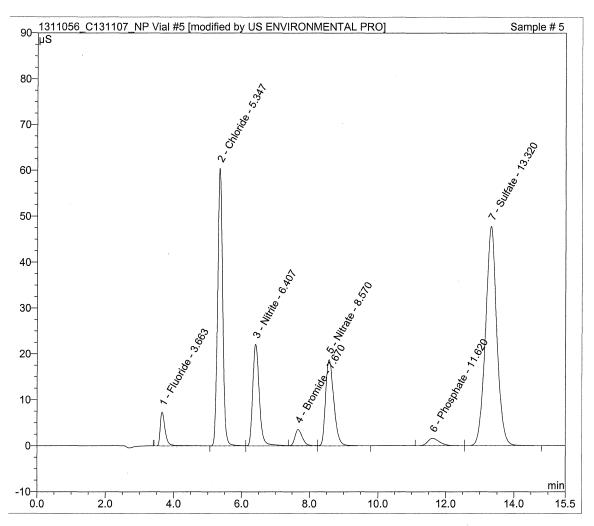
 Sample Type:
 standard
 Dilution Factor:
 1.0000

 Program:
 Program Anions Right
 Vial #:
 4

 Inj. Date/Time:
 11.19.13
 17:41
 Run Number:
 4

No.	Time min	Peak Name	Туре	Area μS*min	Height µS	Amount mg/L
1	3.67	Fluoride	ВМВ	0.283	1.644	0.9702
2	5.34	Chloride	ВМ	2.057	11.390	9.1933
3	6.41	Nitrite	М	1.107	4.863	2.3660
4	7.70	Bromide	Rd	0.202	0.813	2.4277
5	8.62	Nitrate	МВ	1.121	3.971	2.4010
6	11.64	Phosphate	ВМВ	0.134	0.340	0.9513
7	13.24	Sulfate	вмв	3.707	9.259	23.2482

Page 5 of 28 11/20/2013 9:26 AM

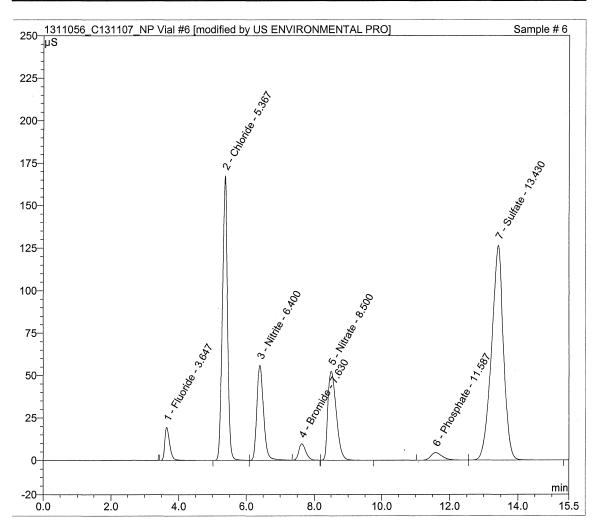

 Sample Name:
 Std 4
 Inj. Vol.:
 25.0

 Sample Type:
 standard
 Dilution Factor:
 1.0000

 Program:
 Program Anions Right
 Vial #:
 5

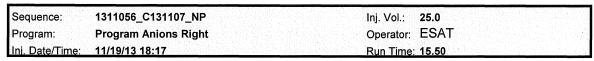
 Inj. Date/Time:
 11.19.13 17:59
 Run Number:
 5

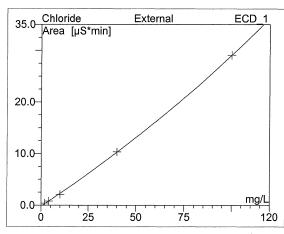
No.	Time	Peak Name	Туре	Area	Height	Amount
	min			μS*min	μS	mg/L
11	3.66	Fluoride	Ru	1.235	7.307	4.0086
2	5.35	Chloride	ВМ	10.343	60.460	40.2176
3	6.41	Nitrite	М	4.995	22.084	10.0396
4	7.67	Bromide	Rd	0.866	3.511	10.0186
5	8.57	Nitrate	МВ	5.218	18.721	10.0263
6	11.62	Phosphate	ВМ	0.644	1.607	4.0125
7	13.32	Sulfate	МВ	18.190	47.749	100.4732

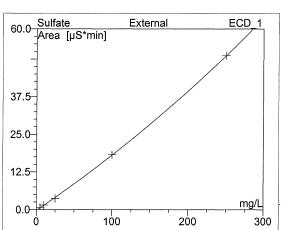

 Sample Name:
 Std 5
 Inj. Vol.:
 25.0

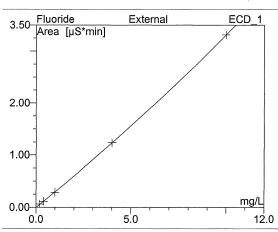
 Sample Type:
 standard
 Dilution Factor:
 1.0000

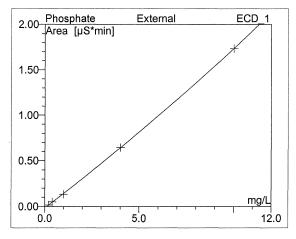
 Program:
 Program Anions Right
 Vial #:
 6

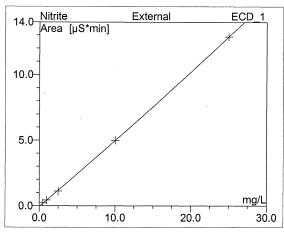

 Inj. Date/Time:
 11.19.13
 18:17
 Run Number:
 6

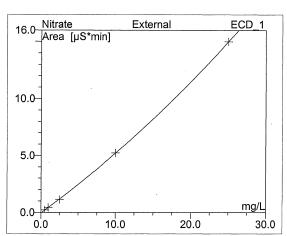

No.	Time min	Peak Name	Туре	Area µS*min	Height µS	Amount mg/L
1	3.65	Fluoride	Ru	3.311	19.449	9.9990
2	5.37	Chloride	ВМ	29.054	167.321	99.9770
3	6.40	Nitrite	М	12.883	55.999	24.9952
4	7.63	Bromide	Rd	2.299	9.560	24.9979
5	8.50	Nitrate	MB	14.987	52.275	24.9973
6	11.59	Phosphate	ВМ	1.734	4.432	9.9986
7	13.43	Sulfate	MB	51.133	126.348	249.9500

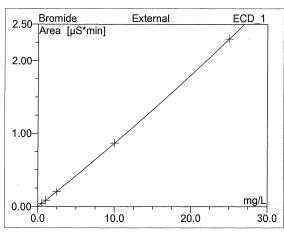



Page 7 of 28 Printed: 11/20/2013 9:26 AM


Calibration Batch Report




No.	Ret.Time	Peak Name	Cal.Type	Points	Offset	Slope	Curve	Coeff.Det.
	min				(C0)	(C1)	(C2)	%
1	3.65	Fluoride	QOff	5	-0.006	0.295	0.004	99.9984
2	5.37	Chloride	QOff	5	-0.211	0.242	0.001	99.9899
3	6.40	Nitrite	QOff	5	-0.070	0.495	0.001	99.9943
4	7.63	Bromide	QOff	5	-0.001	0.083	0.000	99.9986
5	8.50	Nitrate	QOff	5	-0.047	0.474	0.005	99.9977
6	11.59	Phosphate	QOff	5	-0.018	0.158	0.002	99.9959
7	13.43	Sulfate	QOff	5	-0.315	0.170	0.000	99.9923
		AVERAGE:			-0.0954	0.2739	0.0018	99.9953

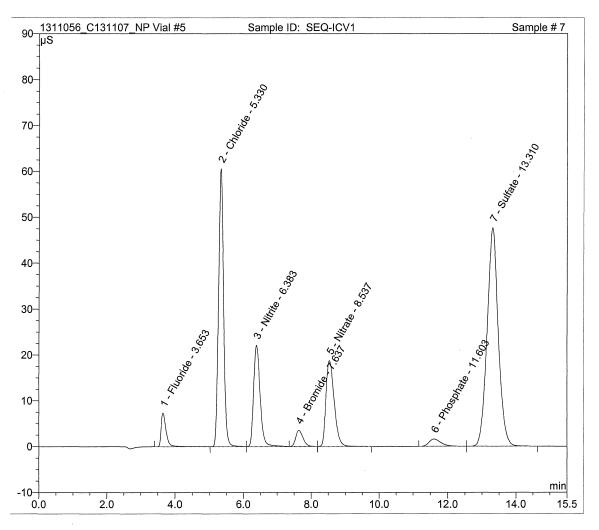

Page 8 of 28

Printed: 11/20/2013 9:26 AM

Sequence:	1311056_C131107_NP	Inj. Vol.: 25.0
Program:	Program Anions Right	Operator: n.a.
Inj. Date/Time:	11/19/13 18:17	Run Time: 15.50

No.	Ret.Time min	Peak Name	Cal.Type	Points	Offset (C0)	Slope (C1)	Curve (C2)	Coeff.Det. %
1	3.65	Fluoride	QOff	5	-0.006	0.295	0.004	99.9984
2	5.37	Chloride	QOff	5	-0.211	0.242	0.001	99.9899
3	6.40	Nitrite	QOff	5	-0.070	0.495	0.001	99.9943
4	7.63	Bromide	QOff	5	-0.001	0.083	0.000	99.9986
5	8.50	Nitrate	QOff	5	-0.047	0.474	0.005	99.9977
6	11.59	Phosphate	QOff	5	-0.018	0.158	0.002	99.9959
7	13.43	Sulfate	QOff	5	-0.315	0.170	0.000	99.9923
		AVERAGE:	-0.0954	0.2739	0.0018	99.9953		

Page 9 of 28 11/20/2013 9:26 AM


 Sample Name:
 SEQ-ICV1
 Inj. Vol.:
 25.0

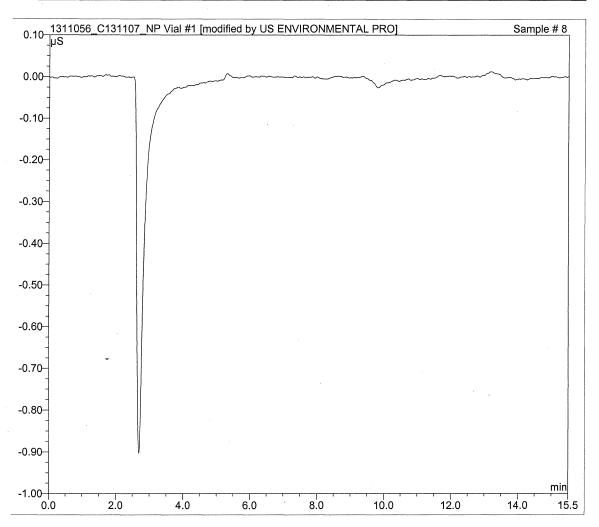
 Sample Type:
 unknown
 Dilution Factor:
 1.0000

 Program:
 Program Anions Right
 Vial #:
 5

 Inj. Date/Time:
 11.19.13 18:35
 Run Number:
 7

No.	Time min	Peak Name	Type	Area μS*min	Height μS	Amount mg/L
1	3.65	Fluoride	Ru	1.234	7.322	4.0041
2	5.33	Chloride	ВМ	10.371	60.571	40.3146
3	6.38	Nitrite	М	4.978	22.110	10.0081
4	7.64	Bromide	Rd	0.868	3.516	10.0418
5	8.54	Nitrate	МВ	5.231	18.746	10.0481
6	11.60	Phosphate	ВМ	0.639	1.597	3.9806
7	13.31	Sulfate	МВ	18.225	47.597	100.6494

Page 10 of 28 11/20/2013 9:26 AM


 Sample Name:
 SEQ-ICB1
 Inj. Vol.:
 25.0

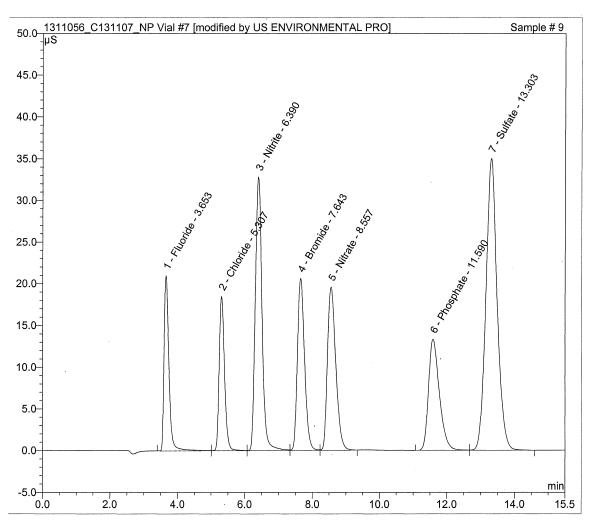
 Sample Type:
 unknown
 Dilution Factor:
 1.0000

 Program:
 Program Anions Right
 Vial #:
 1

 Inj. Date/Time:
 11.19.13 18:53
 Run Number:
 8

No.	Time	Peak Name	Туре	Area	Height	Amount
	min			μS*min	μS	mg/L

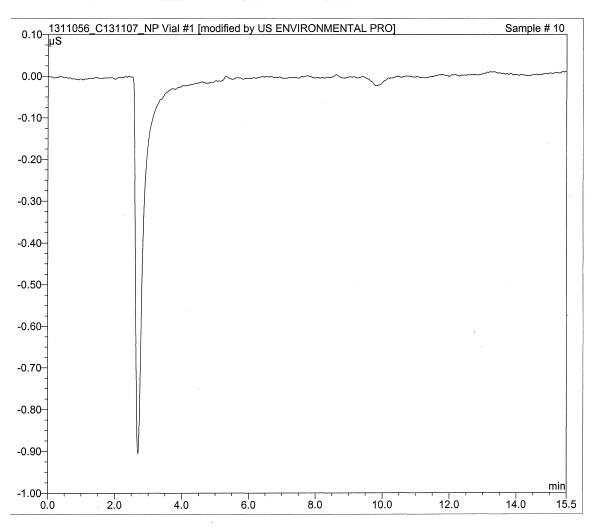
Page 11 of 28 11/20/2013 9:26 AM


 Sample Name:
 SEQ-SCV1
 Inj. Vol.:
 25.0

 Sample Type:
 unknown
 Dilution Factor:
 1.0000

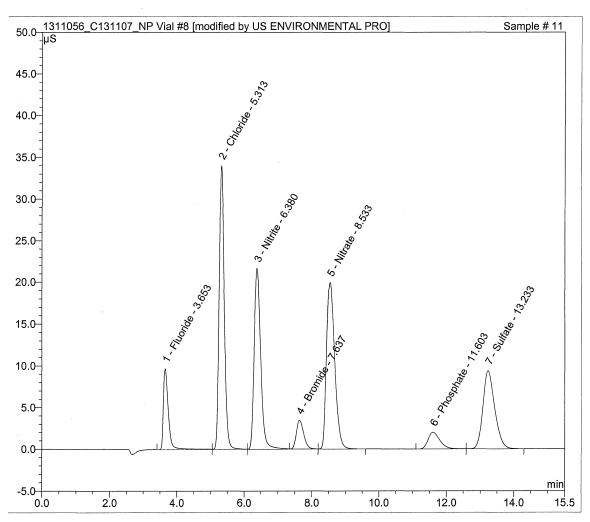
 Program:
 Program Anions Right
 Vial #:
 7

 Inj. Date/Time:
 11.19.13
 19:12
 Run Number:
 9


No.	Time min	Peak Name	Туре	Area μS*min	Height μS	Amount mg/L
11	3.65	Fluoride	BM *	3.437	20.994	10.3395
2	5.31	Chloride	M *	3.375	18.477	14.3807
3	6.39	Nitrite	M *	7.528	32.816	14.9289
4	7.64	Bromide	M *	5.047	20.625	49.9602
5	8.56	Nitrate	MB*	5.632	19.561	10.7400
6	11.59	Phosphate	ВМ	5.032	13.327	25.1293
7	13.30	Sulfate	МВ	13.355	35.016	75.6987

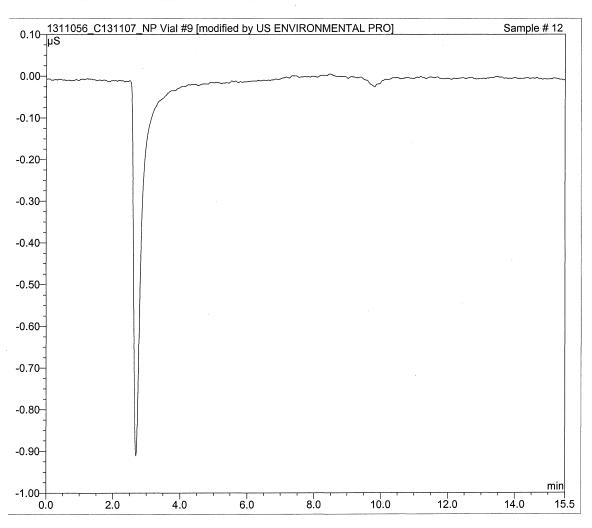
Page 12 of 28 11/20/2013 9:26 AM

Sample Name: SEQ-IBL1 Inj. Vol.: 25.0 Sample Type: Dilution Factor: 1.0000 unknown Program: **Program Anions Right** Vial #: 1 Inj. Date/Time: 11.19.13 19:30 Run Number: 10


No.	Time	Peak Name	Туре	Area	Height	Amount
	min			μS*min	μS	mg/L

Page 13 of 28 11/20/2013 9:26 AM

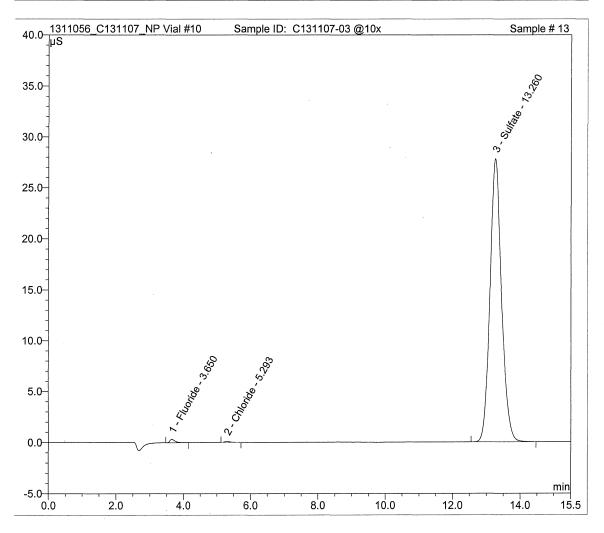
1311056-BS1 25.0 Sample Name: Inj. Vol.: Sample Type: unknown Dilution Factor: 1.0000 Program: **Program Anions Right** Vial #: 8 Inj. Date/Time: 11.19.13 19:48 Run Number: 11


No.	Time min	Peak Name	Type	Area μS*min	Height µS	Amount mg/L
1	3.65	Fluoride	BM *	1.642	9.715	5.2445
2	<u>5.</u> 31	Chloride	M *	5.996	34.025	24.3970
3	6.38	Nitrite	M *	4.933	21.688	9.9197
4	7.64	Bromide	Rd	0.855	3.416	9.8967
5	8.53	Nitrate	MB*	5.635	19.949	10.7456
6	11.60	Phosphate	ВМ	0.813	2.022	4.9824
7	13.23	Sulfate	MB	3.831	9.397	23.9528

Page 14 of 28 11/20/2013 9:26 AM

Sample Name: 1311056-BLK1 Inj. Vol.: 25.0 Sample Type: Dilution Factor: 1.0000 unknown **Program Anions Right** Program: Vial #: 9 Inj. Date/Time: 11.19.13 20:06 Run Number: 12

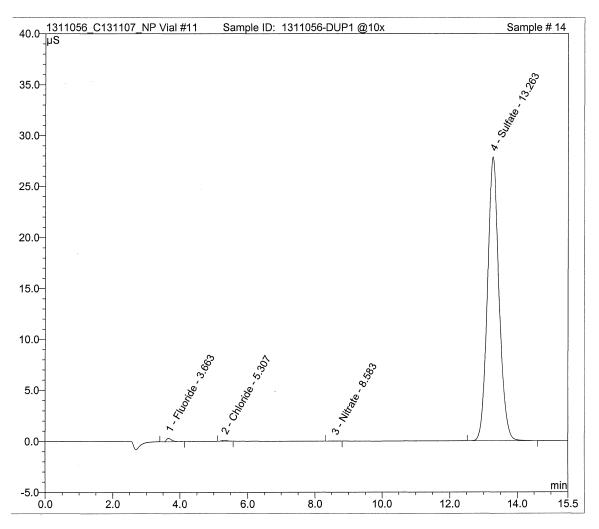
No.	Time	Peak Name	Type	Area	Height	Amount
	min			μS*min	μS	mg/L



Operator: ESAT- Right_system Sequence: 1311056_C131107_NP 11/20/2013 9:26 AM

Page 15 of 28

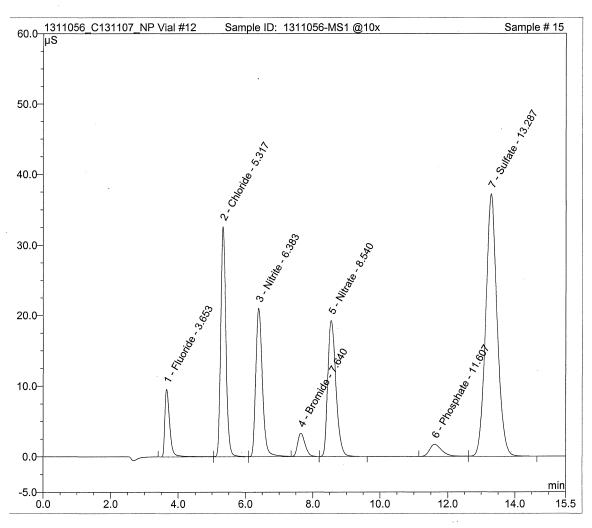
Sample Name: C131107-03 @10x Inj. Vol.: 25.0 1.0000 Sample Type: unknown Dilution Factor: Program: **Program Anions Right** Vial #: 10 Inj. Date/Time: 11.19.13 20:24 Run Number: 13


No.	Time min	Peak Name	Туре	Area μS*min	Height µS	Amount mg/L
1	3.65	Fluoride	вмв	0.057	0.326	0.2155
2	5.29	Chloride	вмв	0.017	0.089	0.9405
3	13.26	Sulfate	BMB	10.965	27.812	63.1021

Sample Name: 1311056-DUP1 @10x 25.0 Inj. Vol.: Sample Type: unknown Dilution Factor: 1.0000 Program: **Program Anions Right** Vial #: 11 Inj. Date/Time: 11.19.13 20:42 Run Number: 14

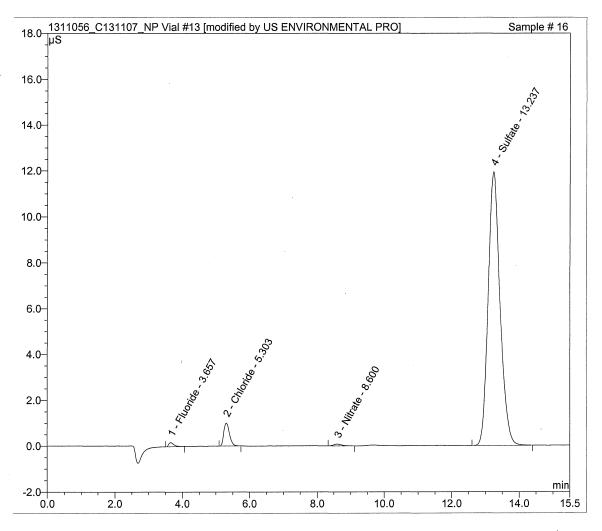
Page 16 of 28 11/20/2013 9:26 AM

No.	Time min	Peak Name	Type	Area µS*min	Height μS	Amount mg/L
1	3.66	Fluoride	вмв	0.059	0.330	0.2200
2	5.31	Chloride	вмв	0.017	0.090	0.9389
3	8.58	Nitrate	вмв	0.004	0.015	0.1069
4	13.26	Sulfate	вмв	10.998	27.853	63.2757



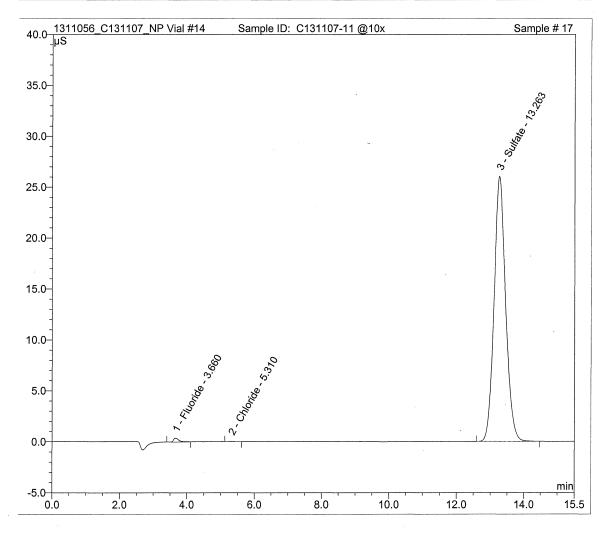
Sequence: 1311056_C131107_NP Page 17 of 28 11/20/2013 9:26 AM

Sample Name: 1311056-MS1 @10x Inj. Vol.: 25.0 1.0000 Sample Type: Dilution Factor: unknown Program: **Program Anions Right** Vial #: 12 Inj. Date/Time: 11.19.13 21:00 Run Number: 15


Operator: ESAT- Right_system

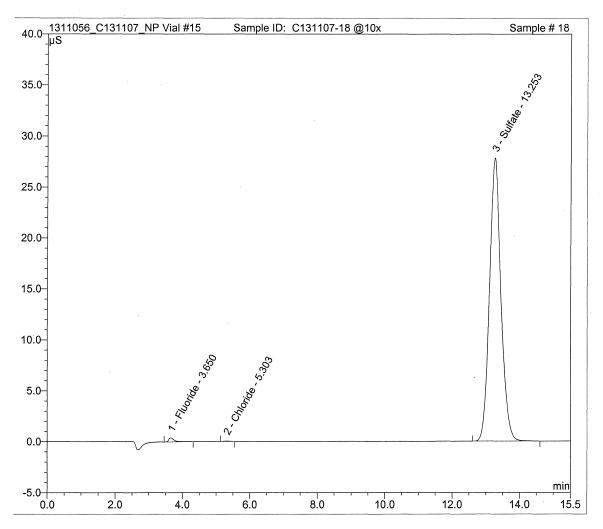
No.	Time min	Peak Name	Type	Area µS*min	Height µS	Amount mg/L
1	3.65	Fluoride	ВМ	1.629	9.576	5.2069
2	5.32	Chloride	М	5.794	32.598	23.6406
3	6.38	Nitrite	М	4.813	21.013	9.6852
4	7.64	Bromide	Rd	0.827	3.278	9.5840
5	8.54	Nitrate	MB	5.472	19.255	10.4652
6	11.61	Phosphate	ВМ	0.723	1.725	4.4653
7	13.29	Sulfate	МВ	14.520	37.167	81.7537

Sample Name: C131107-06 25.0 Inj. Vol.: Sample Type: unknown Dilution Factor: 1.0000 Program: **Program Anions Right** Vial #: 13 Inj. Date/Time: 11.19.13 21:18 Run Number: 16


No.	Time min	Peak Name	Туре	Area μS*min	Height μS	Amount mg/L
1	3.66	Fluoride	вмв	0.032	0.181	0.1294
2	5.30	Chloride	ВМВ	0.194	1.002	1.6668
3	8.60	Nitrate	вмв	0.023	0.081	0.1481
4	13.24	Sulfate	вмв	4.860	11.935	29.7524

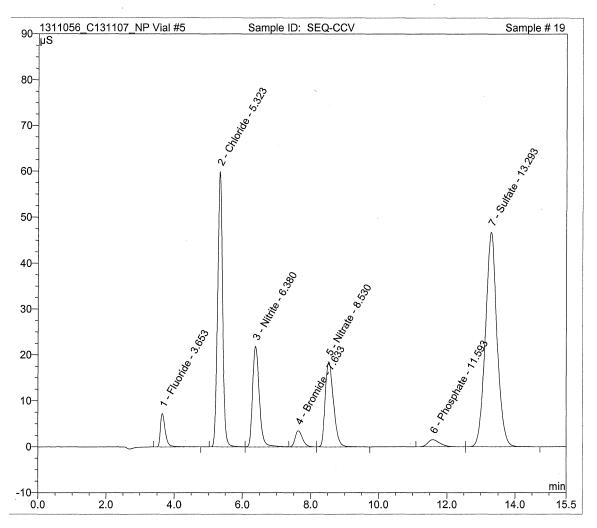
Page 19 of 28 11/20/2013 9:26 AM

Sample Name: C131107-11 @10x Inj. Vol.: 25.0 Sample Type: unknown Dilution Factor: 1.0000 Program: **Program Anions Right** Vial #: 14 Inj. Date/Time: 11.19.13 21:36 Run Number: 17


No.	Time min	Peak Name	Type	Area µS*min	Height µS	Amount mg/L
1	3.66	Fluoride	ВМВ	0.068	0.380	0.2499
2	5.31	Chloride	вмв	0.007	0.032	0.8961
3	13.26	Sulfate	вмв	10.363	26.040	59.8904

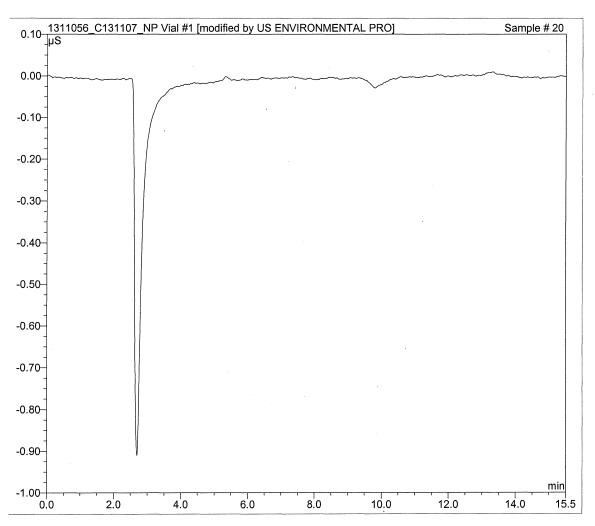
Page 20 of 28 11/20/2013 9:26 AM

Sample Name: C131107-18 @10x 25.0 Inj. Vol.: Sample Type: unknown Dilution Factor: 1.0000 Program: **Program Anions Right** Vial #: 15 Inj. Date/Time: 11.19.13 21:54 Run Number: 18


No.	Time min	Peak Name	Type	Area μS*min	Height μS	Amount mg/L
1	3.65	Fluoride	вмв	0.072	0.387	0.2632
2	5.30	Chloride	вмв	0.007	0.037	0.8981
3	13.25	Sulfate	BMB	11.052	27.826	63.5656

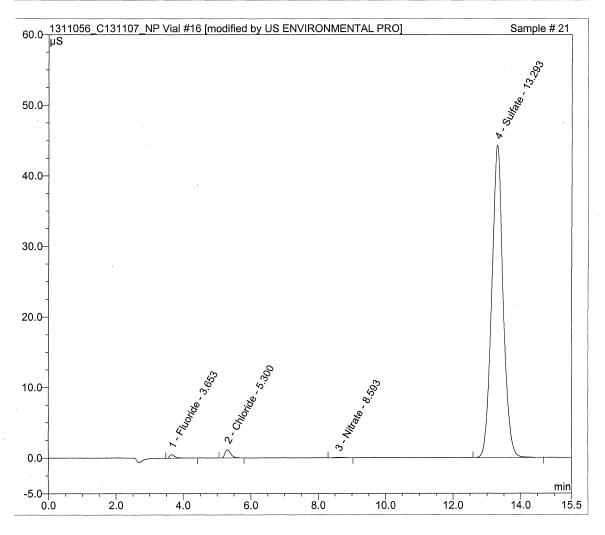
Page 21 of 28 11/20/2013 9:26 AM

Sample Name: SEQ-CCV Inj. Vol.: 25.0 Sample Type: unknown Dilution Factor: 1.0000 Program: **Program Anions Right** Vial #: 5 Inj. Date/Time: 11.19.13 22:12 Run Number: 19


No.	Time min	Peak Name	Type	Area µS*min	Height μS	Amount mg/L
1	3.65	Fluoride	вмв	1.236	7.262	4.0107
2	5.32	Chloride	вм	10.410	59.877	40.4542
3	6.38	Nitrite	М	4.988	21.838	10.0265
4	7.63	Bromide	Rd	0.873	3.470	10.0924
5	8.53	Nitrate	МВ	5.255	18.497	10.0912
6	11.59	Phosphate	вм	0.633	1.545	3.9456
7	13.29	Sulfate	МВ	18.325	46.706	101.1529

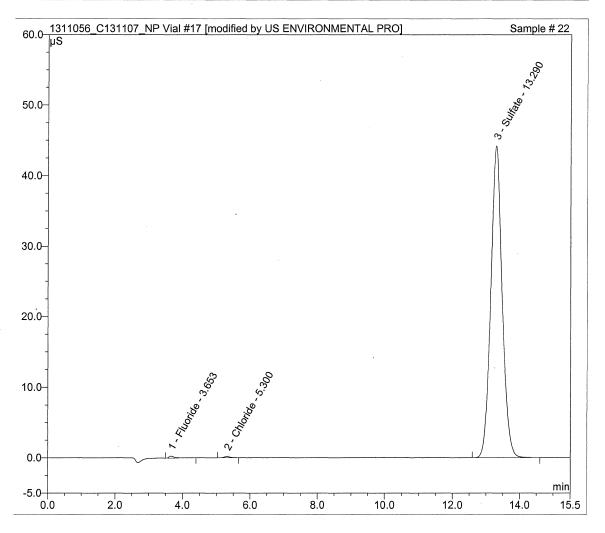
Page 22 of 28 11/20/2013 9:26 AM

Sample Name: SEQ-CCB Inj. Vol.: 25.0 Sample Type: unknown Dilution Factor: 1.0000 Program: **Program Anions Right** Vial #: 1 Inj. Date/Time: 11.19.13 22:30 Run Number: 20

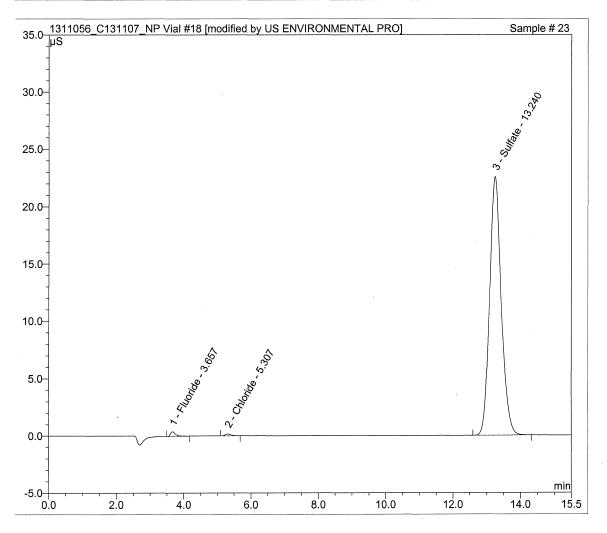

No.	Time	Peak Name	Туре	Area	Height	Amount
	min			μS*min	μS	mg/L

Page 23 of 28 11/20/2013 9:26 AM

Sample Name: C131107-21 Inj. Vol.: 25.0 Dilution Factor: Sample Type: unknown 1.0000 Program: **Program Anions Right** Vial #: 16 Inj. Date/Time: 11.19.13 22:48 Run Number: 21


No.	Time min	Peak Name	Type	Area µS*min	Height μS	Amount mg/L
1	3.65	Fluoride	вмв	0.101	0.519	0.3618
2	5.30	Chloride	вмв	0.227	1.160	1.8022
3	8.59	Nitrate	вмв	0.020	0.067	0.1408
4	13.29	Sulfate	вмв	17.257	44.292	95.7629

Page 24 of 28 11/20/2013 9:26 AM


Sample Name: C131107-24 @10x Inj. Vol.: 25.0 unknown Sample Type: 1.0000 Dilution Factor: Program: **Program Anions Right** Vial #: 17 Inj. Date/Time: 11.19.13 23:07 Run Number: 22

No.	Time min	Peak Name	Туре	Area μS*min	Height µS	Amount mg/L
1	3.65	Fluoride	вмв	0.059	0.283	0.2208
2	5.30	Chloride	вмв	0.035	0.177	1.0114
3	13.29	Sulfate	вмв	17.254	44.219	95.7498

Sample Name: C131107-27 @10x Inj. Vol.: 25.0 Dilution Factor: 1.0000 Sample Type: unknown Program: **Program Anions Right** Vial #: 18 Inj. Date/Time: 11.19.13 23:25 Run Number: 23

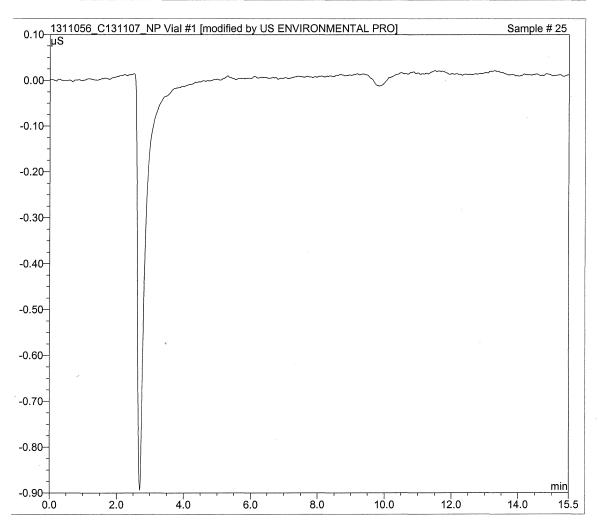

No.	Time min	Peak Name	Туре	Area µS*min	Height μS	Amount mg/L
1	3.66	Fluoride	вмв	0.071	0.405	0.2621
2	5.31	Chloride	вмв	0.031	0.154	0.9954
3	13.24	Sulfate	BMB*	8.982	22.568	52.4603

Page 26 of 28 11/20/2013 9:26 AM

Sample Name: SEQ-CCV 25.0 Inj. Vol.: 1.0000 Sample Type: Dilution Factor: unknown Program: **Program Anions Right** Vial #: 5 Inj. Date/Time: 11.19.13 23:43 Run Number: 24

No.	Time min	Peak Name	Type	Area µS*min	Height µS	Amount mg/L
1	3.65	Fluoride	вмв	1.239	7.309	4.0193
2	5.32	Chloride	ВМ	10.473	60.390	40.6746
3	6.38	Nitrite	М	5.010	21.963	10.0696
4	7.64	Bromide	Rd	0.877	3.489	10.1418
5	8.53	Nitrate	МВ	5.282	18.602	10.1365
6	11.58	Phosphate	ВМ	0.628	1.541	3.9193
7	13.27	Sulfate	МВ	18.419	47.052	101.6267

Page 27 of 28 11/20/2013 9:26 AM


 Sample Name:
 SEQ-CCB
 Inj. Vol.:
 25.0

 Sample Type:
 unknown
 Dilution Factor:
 1.0000

 Program:
 Program Anions Right
 Vial #:
 1

 Inj. Date/Time:
 11.20.13 00:01
 Run Number:
 25

No.	Time	Peak Name	Туре	Area	Height	Amount
	min			μS*min	μS	mg/L

Page 28 of 28 11/20/2013 9:26 AM

 Sample Name:
 STOP
 Inj. Vol.:
 25.0

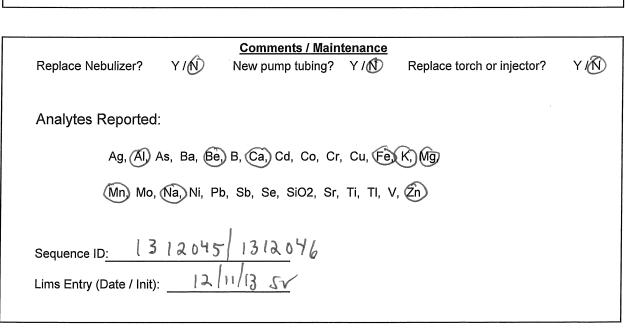
 Sample Type:
 unknown
 Dilution Factor:
 1.0000

 Program:
 Program Stop
 Vial #:
 1

 Inj. Date/Time:
 11.20.13 00:16
 Run Number:
 26

| n.a. |
|------|------|------|------|------|------|------|
| n.a. |

1311056_C131107_NP Vial #1 Sample ID: STOP Sample #26
Can't open raw data file "C:\ChromelidataRight, system\Sequences and Data\2013 ESAT\
1311056_C131107_NP.SEQECD_1.CHL\15916.acd".


The system cannot find the file specified.

PERKIN ELMER OPTIMA 4300DV ICP-OE

Project(s): Work Order(s):		he Nov 2013 TDF: A-025	Date: 12 1 10 12013
		Batch Preparation Inform	nation_
Digest / Prep		<u>Matrix</u>	Batch ID
(R) Total /(D	iss	Water / Soil / Other	1312039 / 1312035
		Data Storage	,
Data File: X:/ľ	Vletals Data Files/	A-025_1312039-	13 (210

Standard Information							
Calibration Std. # 1 = Reagent Blank Solution	Calibration Std. # 2 = ESAT High, LIMS: 3020404						
ACV : (LIMS ID: 3020406)	Prepped: 12/03/12 By: NP						
Prepped: 11/04/13 By: 54	Tw/CCV: 1:2 of 3020404 (LIMS ID: 3020405)						
CRQL Stock: (LIMS ID: 3020410)	Tw/CCV: 1:2 of 3020404 (LIMS ID: 3020405) Prepped: /2/10/13 By: 5V						
Prepped: 2-04-2013 By: SV	•						
CRQL Daily (LIMS, ID: 3020411)	ICSA: 3020408 Prepped: 2-04-2013						
Prepped: 12/10/13 By: 5V	ICSAB: 3020409 Prepped: 2-04-2013						

Spike Information					
Dissolved Spikes	Tot. / Tot. Rec. Spikes				
Sample ID: <u> </u>	Sample ID: 013/107 - 02, -05				
Sample ID: <u> </u>	Sample V <u>ol: 50</u> mL				
Sample vol: 10 mL					
QCS-3: 100 uL	WW-LFS1: 500 uL				
Exp: 2-1-2014 (LIMS ID: 3020134)	Exp: 2-1-2014 (LIMS ID: 3020135)				
Salt Spike:100uL	WW-LFS2: 500 uL				
Prepped 2-04-2013 (LIMS ID: 3020401)	Exp: 2-1-2014 (LIMS ID: 3020136)				

TLF-06	5.02	SOP: QA	Q-04.01		Eff. Date: 11/11/2013
		ESAT F	Regior	n 8	
		ICP-OE Data	Review	Form	
		Analyst / Bench	Review	- Level I	
LIMS:	0131107	· · · · · · · · · · · · · · · · · · ·	TDF:	A-025	
Matrix:	Water	·	Analy	sis: Dissolved / Total	Recowable metal
	Method / Instrume	ent QC Parameters		Analytical Batch / Sample	e Parameters
Yes No	ICV 95-105%	Yes SCV 90-110%	Yes No	Mth. Blk. (MB) / Prep. BLK	(PB) ≤ ± PQL
Yes No	ICB ≤ ± PQL	☐ Yes ☐ No CRDL 70-130%	∑ Yes ☐ No	Blk. Spike (BS) 85-115% /	SRM In Control
⊠ Yes □ No	ICSA Spiked Analyte	es 80% - 120%	☑ Yes ☐ No	Laboratory Duplicate Analy	zed
Yes No	ICSA Non-Spiked Ar	nalytes ≤ ± PQL	Yes No	MS Analyzed Every 10% o	f Samples 70-130%
Yes No	ICSAB Spiked Analy	rtes 80-120%	Yes No	Serial Dilution Analyzed	-
Yes No	CCBs ≤ ± PQL	⊠Yes □No CCVs 90-110%	Yes D No	Internal Standards 80-120	%
	Descr	Other data quality issues ide ibe any anomaly or deficiency no		Yes No	
		and any anomaly of denoterior no			
	· .				***************************************
		LIMS Electronic	c Data Tr	ansfer	
☑ Yes ☐ No	The instrument data	file is uploaded to the X: drive	Yes No	Instrument data are uploade	d into the LIMS
Yes No	All samples and QC	data are present in LIMS	Yes No	The analyte list for the seque	ence is complete
Analyst:	MA 1)		Date:	12/11/13	
	/ 101	Peer Review of Analyt	ical Analy	/sis – Level II	
	Method / Instrumer	nt QC Parameters		Analytical Batch / Sample	Parameters
☐ Yes ☐ No	ICV 95-105%	Yes SCV 90-110%	Yes No	Mth. Blk. (MB) / Prep. BLK (I	PB) ≤ ± PQL
☑ Yes ☐ No	ICB≤±PQL	☐ Yes	Yes No	Blk. Spike (BS) 85-115% / S	RM In Control
☑ Yes ☐ No	ICSA Spiked Analytes	3 80-120%	Yes No	Laboratory Duplicate Analyz	ed
I⊈ Yes □ No	ICSA Non-Spiked Ana	alytes ≤ ± PQL	⊠ Yes □ No	MS Analyzed Every 10% of	Samples 70-130%
☑ Yes ☐ No	ICSAB Spiked Analyte	,	√Q Yes ☐ No	Serial Dilution Analyzed	
☑ Yes ☐ No	CCBs ≤ ± PQL	☑ Yes ☐ No CCVs 90-110%	☑ Yes	Internal Standards 80-120%)
		Other data quality issues ider		☐ Yes	
	Describ	pe any anomaly or deficiency not	indicated	above in the space provided	
		LIMS Electronic	Data Tra	ınsfer	
Yes	The instrument data fi	le is uploaded to the X: drive	Yes	Instrument data are uploaded	d into the LIMS
□ No ☑ Yes	All samples and QC d	ata are present in LIMS	☐ No ☐ Yes	The analyte list for the seque	
□ No		ata are procent in Livio	□ No	analyte list for the seque	
Peer Rev	riewer:		Date:	11/1/2013	i i

1312039

Matrix: Water

TechLaw, Inc. - ESAT Region 8

Printed: 12/9/2013 1:26:02PM

Date Prepared: 12/09/13 13:24 By: SV

Prepared using: METALS - No Lab Prep Reqd

Lab Number	Analysis	EPA Tag ID	Initial (mL)	Final (mL)	Spike1 ID	ul Spike1	Spike2 ID	ul Spike2	Source ID	QC Code	Extraction Comments
C131107-01 A	DM-Hardness - Calculated	8-A	50	50						CHV-101U	
C131107-04 A	DM-Hardness - Calculated	8-A	50	50						DR-1	
C131107-07 A	DM-Hardness - Calculated	8-A	50	50						DR-2	
C131107-09 A	DM-Hardness - Calculated	8-A	50	50						DR-3	
C131107-12 A	DM-Hardness - Calculated	8-A	50	50						DR-4	
C131107-14 A	DM-Hardness - Calculated	8-A	50	50						DR-5	
C131107-16 A	DM-Hardness - Calculated	8-A	50	50						DR-6	
C131107-19 A	DM-Hardness - Calculated	8-A	50	50						DR-7	
C131107-22 A	DM-Hardness - Calculated	8-A	50	50			•			MW-109S	
C131107-25 A	DM-Hardness - Calculated	8-A	50	50						MW-110	•
C131107-28 A	DM-Hardness - Calculated	8-A	50	50						MW-2D	
C131107-30 A	DM-Hardness - Calculated	8-A	50	50						MW-3D	
C131107-01 A	ICPOE Diss. Metals	8-A	50	50					·	CHV-101U	
C131107-04 A	ICPOE Diss. Metals	8-A	50	50	·					DR-1	
C131107-07 A	ICPOE Diss. Metals	8-A	50	50						DR-2	
C131107-09 A	ICPOE Diss. Metals	8-A	50	50						DR-3	
C131107-12 A	ICPOE Diss. Metals	8-A	50	50						DR-4	
C131107-14 A	ICPOE Diss. Metals	8-A	50	50						DR-5	
C131107-16 A	ICPOE Diss. Metals	8-A	50	50						DR-6	
C131107-19 A	ICPOE Diss. Metals	8-A	50	50						DR-7	
C131107-22 A	ICPOE Diss. Metals	8-A	50	50						MW-109S	
C131107-25 A	ICPOE Diss. Metals	8-A	50	50					·	MW-110	
C131107-28 A	ICPOE Diss. Metals	8-A	50	50						MW-2D	
C131107-30 A	ICPOE Diss. Metals	8-A	50	50 D						MW-3D	
				M	40		- 12	110/13	•		•

Preparation Reviewed By

Date

Page 1 of 2

1312039

Matrix: Water

TechLaw, Inc. - ESAT Region 8

Printed: 12/9/2013 1:26:02PM

Date Prepared: 12/09/13 13:24 By: SV

Prepared using: METALS - No Lab Prep Reqd

Lab Number	Analysis	EPA Tag ID	Initial (mL)	Final (mL)	Spike1 ID	ul Spike1	Spike2 ID	ul Spike2	Source ID	QC Code	Extraction Comments
1312039-BLK1	QC		50	50						Blank	
1312039-BS1	QC		10	10	3020403	100				LCS	
1312039-DUP1	QC		50	50					C131107-04	Duplicate	
1312039-MS1	QC		10	10	3020403	100			C131107-04	Matrix Spike	
1312039-MS2	QC	·	10	10	3020403	100			C131107-07	Matrix Spike	

1312035

Matrix: Water

TechLaw, Inc. - ESAT Region 8

Printed: 12/9/2013 8:14:53AM

Date Prepared: 12/09/13 08:09 By: SV

Prepared using: METALS - 200.2 - TR Metals

	Lab Number	Analysis	EPA Tag ID	Initial (mL)	Final (mL)	Spike1 ID	ul Spike1	Spike2 ID	ul Spike2	Source ID	QC Code	Extraction Comments
ţ	C131107-02 A	ICPMS Tot. Rec. Metals	8-B	50	50						CHV-101U	OK
	C131107-05 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-1	
	C131107-08 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-2	
ſ	C131107-10 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-3	lox
ſ	C131107-13 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-4	
ſ	C131107-15 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-5	
	C131107-17 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-6	V
I	C131107-20 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-7	6
Ī	C131107-23 A	ICPMS Tot. Rec. Metals	8-B	50	50						MW-109S	167
Ī	C131107-26 A	ICPMS Tot. Rec. Metals	8-B	50	50			-			MW-110	
Ī	C131107-29 A	ICPMS Tot. Rec. Metals	8-B	50	50						MW-2D	
Ī	C131107-31 A	ICPMS Tot. Rec. Metals	8-B	50	50						MW-3D	U
Ī	C131107-02 A	ICPOE Tot. Rec. Metals	8-B	50	50						CHV-101U	
Ī	C131107-05 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-1	
I	C131107-08 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-2	
ľ	C131107-10 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-3	
l	C131107-13 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-4	
l	C131107-15 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-5	
ľ	C131107-17 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-6	
Ì	C131107-20 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-7	
	C131107-23 A	ICPOE Tot. Rec. Metals	8-B	50	50					·	MW-109S	
ľ	C131107-26 A	ICPOE Tot. Rec. Metals	8-B	50	50						MW-110	
	C131107-29 A	ICPOE Tot. Rec. Metals	8-B	50	50						MW-2D	
Ì	C131107-31 A	ICPOE Tot. Rec. Metals	8-B	50	50	,	1				MW-3D	
			,		Ju	# 2		12	110/13	*		

Preparation Reviewed By

Date

Page 1 of 2

1312035

Matrix: Water

TechLaw, Inc. - ESAT Region 8

Printed: 12/9/2013 8:14:53AM

Date Prepared: 12/09/13 08:09 By: SV

Prepared using: METALS - 200.2 - TR Metals

Lab Number	Analysis	EPA Tag ID	Initial (mL)	Final (mL)	Spike1 ID	ul Spike1	Spike2 ID	ul Spike2	Source ID	QC Code	Extraction Comments
1312035-BLK1	QC		50	50						Blank	
1312035-BLK2	QC		50	50						Blank	
1312035-DUP1	QC		50	50					C131107-02	Duplicate	
1312035-DUP2	QC		50	50					C131107-02	Duplicate	
1312035-MS1	QC		50	50	3020135	500	3020136	500	C131107-02	Matrix Spike	
1312035-MS2	QC	·	50	50	3020135	500	3020136	500	C131107-02	Matrix Spike	
1312035-MS3	QC		50	50	3020135	500	3020136	500	C131107-05	Matrix Spike	
1312035-MS4	QC		50	50	3020135	500	3020136	500	C131107-05	Matrix Spike	
1312035-SRM1	QC		50	50	3020145	500	3020146	500	-	Reference	
1312035-SRM2	QC		50	50	3020145	500	3020146	500		Reference	·

ANALYSIS SEQUENCE

1312045

Survilles

Lab Number	Dilut. Factor	Analysis	STD ID	Sample/Std Name	EPA Tag ID	Source Sple	Comments
1312045-ICV1	Pactor	QC	3062601	Initial Cal Check	ETA Tag ID	Source Spie	Comments
1312045-SCV1		QC	3020406	Secondary Cal Check		-	
1312045-ICB1		QC	3020400	Initial Cal Blank		_	
1312045-CRL1		QC	3020411	Instrument RL Check		-	
1312045-EKE1	·	QC	3020411	Interference Check A		-	
1312045-IFB1		QC	3020409	Interference Check B		-	
1312039-BLK1		QC	3020409	Blank		-	
1312039-BS1		QC		LCS		_	· · · · · · · · · · · · · · · · · · ·
C131107-04 A		DM-Hardness - Calculated		DR-1	8-A	-	
C131107-04 A		ICPOE Diss. Metals		DR-1	8-A		
1312039-DUP1		QC		Duplicate	0-A	C131107-04	***************************************
1312045-SRD1		QC		Serial Dilution		C131107-04	
1312039-MS1		QC		Matrix Spike		C131107-04	
C131107-07 A		DM-Hardness - Calculated		DR-2	8-A	C131107-04	
C131107-07 A		ICPOE Diss. Metals		DR-2	8-A		·
1312039-MS2		QC		Matrix Spike	0-A	C131107-07	· · · · · · · · · · · · · · · · · · ·
C131107-01 A		DM-Hardness - Calculated		CHV-101U	8-A	C131107-07	
C131107-01 A		ICPOE Diss. Metals		CHV-101U	8-A		
312045-CCV1		QC .	3020405	Calibration Check	8-A	-	
312045-CCB1		QC	3020403	Calibration Blank			
C131107-09 A		DM-Hardness - Calculated		DR-3	8-A	-	
C131107-09 A		ICPOE Diss. Metals		DR-3	8-A		
C131107-09 A		DM-Hardness - Calculated		DR-4	8-A		
C131107-12 A	·	ICPOE Diss. Metals		DR-4	8-A		
C131107-12 A		DM-Hardness - Calculated		DR-5	8-A		
C131107-14 A		ICPOE Diss. Metals		DR-5	8-A		• • • • • • • • • • • • • • • • • • • •
C131107-14 A		DM-Hardness - Calculated		DR-6	8-A		
C131107-16 A		ICPOE Diss, Metals		DR-6	8-A		
C131107-10 A		DM-Hardness - Calculated		DR-7			
C131107-19 A		ICPOE Diss. Metals		DR-7	8-A 8-A	· ·	
C131107-19 A		DM-Hardness - Calculated		MW-109S	8-A		
C131107-22 A		ICPOE Diss. Metals		MW-109S	8-A		
		DM-Hardness - Calculated		MW-110	8-A		
		ICPOE Diss. Metals		MW-110		· .	
		DM-Hardness - Calculated			8-A		
C131107-28 A				MW-2D	8-A	. '	
C131107-28 A		ICPOE Diss. Metals		MW-2D	8-A		
C131107-30 A		DM-Hardness - Calculated		MW-3D	8-A		
C131107-30 Å		ICPOE Diss. Metals	2020405	MW-3D	8-A		
312045-CCV2		QC	3020405	Calibration Check		-	

ANALYSIS SEQUENCE

1312046

Mirliliz

Instrument: ICPOE - PE Optima Sequence Date: 12/10/13 00:00 Printed: 12/11/2013 8:46:37AM Dilut. Lab Number **Factor Analysis** STD ID **Comments** Sample/Std Name **EPA Tag ID Source Sple** 1312046-ICV1 QC 3062601 Initial Cal Check 1312046-SCV1 QC 3020406 Secondary Cal Check 1312046-ICB1 QC Initial Cal Blank 1312046-CRL1 QC 3020411 Instrument RL Check 1312046-IFA1 QC 3020408 Interference Check A 1312046-IFB1 QC 3020409 Interference Check B 1312046-CCV1 QC 3020405 Calibration Check _ 1312046-CCB1 QC Calibration Blank 1312046-CCV2 QC 3020405 Calibration Check -1312046-CCB2 QC Calibration Blank 1312035-BLK1 Blank QC _ 1312035-SRM1 OC Reference C131107-02 ICPOE Tot. Rec. Metals CHV-101U 8-B 1312035-DUP1 QC Duplicate C131107-02 1312046-SRD1 QC C131107-02 Serial Dilution 1312035-MS1 OC Matrix Spike C131107-02 C131107-05 ICPOE Tot. Rec. Metals DR-1 Α 8-B 1312035-MS3 QC Matrix Spike C131107-05 C131107-08 ICPOE Tot. Rec. Metals DR-2 8-B 3020405 Calibration Check 1312046-CCV3 QC Calibration Blank 1312046-CCB3 QC C131107-10 Α ICPOE Tot. Rec. Metals DR-3 8-B C131107-13 ICPOE Tot. Rec. Metals DR-4 8-B C131107-15 Α ICPOE Tot. Rec. Metals DR-5 8-B C131107-17 ICPOE Tot. Rec. Metals DR-6 Α 8-B C131107-20 ICPOE Tot. Rec. Metals DR-7 Α 8-B C131107-23 ICPOE Tot. Rec. Metals MW-109S 8-B MW-110 C131107-26 ICPOE Tot. Rec. Metals 8-B C131107-29 ICPOE Tot. Rec. Metals MW-2D Α 8-B C131107-31 ICPOE Tot. Rec. Metals MW-3D Α 8-B 1312046-CCV4 QC 3020405 Calibration Check 1312046-CCB4 QC Calibration Blank

Analytical Sequence

Method : ESAT_2013_1.0

Mirlioliz

Seq.	Loc.		Sample ID
1	1		Cal Blank
2	9		High Std
3	3	őč	SEQ-ICV
4	10	Šč	SEQ-SCV
5	1	Čž	SEQ-ICB
6	11	Šž	SEQ-CRL
7	12	Ç₹ QČ	SEQ-IFA
8	13	Ľ≵ OČ	SEQ-IFB
9	26		1312039-BLK1
10	27	₹	1312039-BS1
11	28		C131107-04
12	29	₫′	1312039-DUP1
13	30	⊠′	SEQ-SRD1 @5X
14	31	\mathbf{Z}'	1312039-MS1
15	32	8	C131107-07
16	33	☑′	1312039-MS2
17	34		C131107-01 @10X
18	35	4	Blank
19	3	о́с	SEQ-CCV
20	1	o <u>*</u> c	SEQ-CCB
21	36	Ä	C131107-09 @10X
. 22	37		C131107-12 @10X
23	38	Å	C131107-14 @10X
24	39	4	C131107-16 @10X
25	40	A	C131107-19
26	41	4	C131107-22 @10X
27	42		C131107-25 @10X
28	43	4	C131107-28 @10X
29	44		C131107-30 @10X
30	45	Ŕ	Blank v
31	3	óc.	SEQ-CCV 1
32	1	oc +	SEQ-CCB

Method : ESAT_2013_1.0

Seq.	Loc.		Sample ID
1	1		Cal Blank
2	9		High Std
3	3	<u>8₹</u>	SEQ-ICV / W
4	10	₽ OC	SEQ-SCV /
5	1	Š.	SEQ-ICB '
6	11	Ľ∓ QĊ	SEQ-ØRL
7	12	QČ	SEØ-IFA
8	13	QČ	≶EQ-IFB
9	26		1312035-BLK1
10	27	Z'	1312035-SRM1
11	28		C131107-02 @10X
12	29	⋖	1312035-DUP1 @10X
13	30	Z'	SEQ-SRD1 @50X
14	31	⊠′	1312035-MS1 @10X
15	32	8	C131107-05
16	33	\leq	1312035-MS3
17	34		C131107-08
18	35	₩	Blank
19	3	o'c T	SEQ-CCV }
20	1	QC	SEQ-CCB J
21	36		C131107-10 @10X
22	37	∯	C131107-13 @10X
23	38	•	C131107-15 @ 10X
24	39	₩	C131107-17 @10X
25	40		C131107-20
26	41	♦	C131107-23 @ 10X
27	42	*	C131107-26 @10X
28	43	•	C131107-29 @10X
29	44		C131107-31 @10X
30	45		Blank
31	3	οčc	SEQ-CCV 9
32	1	όc	SEQ-CCB Y

Sample Information Detail Report Document Name: A-025_1312039_OED_131210

File Description A-025 Rico Argentine Nov 2013

Parameters Common to All Samples

Batch ID	1312039
Analyst Name	S.VanOvermeiren
Volume Units	mL
Weight Units	g

Parameters That Vary By Sample

Sample No	A/S Location	Sample ID	Remarks
_. 1	26	1312039-BLK1	
2	27	1312039-BS1	
3	28	C131107-04	
4	29	1312039-DUP1	
5	30	SEQ-SRD1 @5X	
6	31	1312039-MS1	
7	32	C131107-07	
8	33	1312039-MS2	
9	34	C131107-01 @10X	
10	35	Blank	
11	36	C131107-09 @10X	
12	37	C131107-12 @10X	
13	38	C131107-14 @10X	
14	39	C131107-16 @10X	
15	40	C131107-19	
16	41	C131107-22 @10X	
17	42	C131107-25 @10X	
18	43	C131107-28 @10X	
19	44	C131107-30 @10X	
20	45	Blank	
Sample No	Aliquot Volume	Diluted To Vol.	Matrix Check Sample
1	Aliquot Volume	Diluted To Vol.	
1 2	Aliquot Volume	Diluted To Vol.	Matrix Check Sample Recovery 3 of 1
1 2 3	Aliquot Volume	Diluted To Vol.	Recovery 3 of 1
1 2 3 4			Recovery 3 of 1 Duplicate of 3
1 2 3 4 5	Aliquot Volume	Diluted To Vol.	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3
1 2 3 4 5 6			Recovery 3 of 1 Duplicate of 3
1 2 3 4 5 6 7			Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8	2	10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3
1 2 3 4 5 6 7 8 9			Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9	2	10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9 10	2	10 10 10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9 10 11	2	10 10 10 10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13	2 1 1 1 1	10 10 10 10 10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13	2	10 10 10 10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2 1 1 1 1 1	10 10 10 10 10 10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10 10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	2 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10 10	Recovery 3 of 1 Duplicate of 3 5X Dilution of 3 Recovery 3 of 3

Sample Information Detail Report Document Name: A-025_1312035_TRA_131210

File DescriptionA-025 Rico Argentine Nov 2013

Parameters Common to All Samples

Batch ID	1312035
Analyst Name	S.VanOvermeiren
Volume Units	mL
Weight Units	g

Parameters That Vary By Sample

Sample No	A/S Location	Sample ID	Remarks
1	26	1312035-BLK1	
	27	1312035-SRM1	
2			
3 ,	28	C131107-02 @10X	
4	29	1312035-DUP1 @10X	
5	30	SEQ-SRD1 @50X	
6	31	1312035-MS1 @10X	
7	32	C131107-05	
8	33	1312035-MS3	
9	34	C131107-08	
	35	Blank	
10			
11	36	C131107-10 @10X	
12	37	C131107-13 @10X	
13	38	C131107-15 @10X	
14	39	C131107-17 @10X	
15	40	C131107-20	
16	41	C131107-23 @10X	
17	42	C131107-26 @10X	
18	43	C131107-29 @10X	
		C131107-23 @ 10X	
19	44		
20	45	Blank	
	Aliquot Volume	Diluted To Vol.	Matrix Check Sample
1	Aliquot Volume	Diluted To Vol.	
1 2			Matrix Check Sample Recovery 2 of 1
1 2 3	1	10	Recovery 2 of 1
1 2 3 4	1 1	10 10	Recovery 2 of 1 Duplicate of 3
1 2 3 4 5	1 1 2	10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3
1 2 3 4 5 6	1 1	10 10	Recovery 2 of 1 Duplicate of 3
1 2 3 4 5 6 7	1 1 2	10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8	1 1 2	10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3
1 2 3 4 5 6 7	1 1 2	10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8	1 1 2	10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9	1 1 2 1	10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9 10	1 1 2 1	10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9 10 11 12	1 1 2 1	10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13	1 1 2 1	10 10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13	1 1 2 1	10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 2 1 1 1 1	10 10 10 10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1	10 10 10 10 10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 2 1 1 1 1	10 10 10 10 10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1	10 10 10 10 10 10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1	10 10 10 10 10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1	10 10 10 10 10 10 10 10 10	Recovery 2 of 1 Duplicate of 3 5X Dilution of 3 Recovery 1 of 3

Willola ----------

Analysis Begun

Start Time: 12/10/2013 12:56:43 PM

Plasma On Time: 12/10/2013 11:59:25 AM Technique: ICP Continuous

Logged In Analyst: esat

Spectrometer Model: Optima 4300 DV, S/N 077N3082602Autosampler Model: AS-93plus

Sample Information File: C:\pe\Administrator\Sample Information\2013\A-025_1312039_OED_131210.sif

Batch ID: 1312039

Results Data Set: A025 1312039 131210B

Results Library: C:\pe\Administrator\Results\Results.mdb

Sequence No.: 1 Sample ID: Cal Blank Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 1 Date Collected: 12/10/2013 12:56:44 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Calib

Nebulizer Parameters: Cal Blank

Analyte

Flow Back Pressure

All 195.0 kPa 0.80 L/min

Mean Corrected

Analyte	Intensity	Std.Dev	. RSD	Conc.	Units
Sc Axial	3882461.7	22650.04	0.58%	100.0	%
Sc Radial	422272.4	8952.67	2.12%	100.0	&
Ag 328.068†	-1592.8	85.37	5.36%	[0.00]	ug/L
Al 396.153†	-400.8	40.91	10.21%	[0.00]	ug/L
As 193.696†	-67.7	2.24	3.31%	[0.00]	ug/L
Ba 233.527†	-64.5	8.89	13.77%	[0.00]	ug/L
Be 313.107†	-1885.3	55.41	2.94%	[0.00]	ug/L
в 249.677†	-2298.2	10.44	0.45%	[0.00]	ug/L
Ca 317.933†	-4.9	15.17	307.00%	[0.00]	ug/L
Cd 214.440†	-74.1	7.10	9.58%	[0.00]	ug/L
Co 228.616†	-4.2	6.74	160.68%	[0.00]	\mathtt{ug}/\mathtt{L}
Cr 267.716†	8.3	2.37	28.47%	[0.00]	ug/L
Cu 324.752†	6740.8	1.44	0.02%	[0.00]	ug/L
Fe 238.204†	45.7	3.84	8.41%	[0.00]	ug/L
K 766.490†	28.1	61.80	219.88%	[0.00]	${\tt ug/L}$
Mg 285.213†	28.5	5.09	17.85%	[0.00]	ug/L
Mn 257.610†	-61.2	17.71	28.92%	[0.00]	
Mo 202.031†	-11.4	4.75	41.58%	[0.00]	ug/L
Na 589.592†	980.0	61.30	6.25%	[0.00]	${\tt ug/L}$
Ni 231.604†	737.1	5.02	0.68%	[0.00]	ug/L
Pb 220.353†	-103.4	4.16	4.02%	[0.00]	ug/L
Sb 206.836†	72.9	6.77	9.30%	[0.00]	-
Se 196.026†	4.1	2.33	56.34%	[0.00]	
SiO2 251.603†	252.9	54.19	21.43%	[0.00]	ug/L
Sr 421.552†	57391.5	339.52	0.59%	[0.00]	ug/L
Ti 334.940†	537.4	40.94	7.62%	[0.00]	_
Tl 190.801†	0.3	2.98	874.60%	[0.00]	ug/L
V 290.880†	3801.6	24.30	0.64%	[0.00]	_
Zn 206.200†	-61.5	5.03	8.17%	[0.00]	ug/L

Sequence No.: 2 Sample ID: High Std Analyst: Initial Sample Wt: Dilution: Autosampler Location: 9
Date Collected: 12/10/2013 12:59:44 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: High Std

 Analyte
 Back Pressure
 Flow

 All
 197.0 kPa
 0.80 L/min

Mean Data: High	Std				
	Mean Corrected			Ca	alib
Analyte	Intensity	Std.Dev.	RSD	Conc. Ur	nits
Sc Axial	3950020.1	23361.72	0.59%	101.7 %	
Sc Radial	432441.0	10264.97	2.37%	102.4 %	
Ag 328.068†	62991.3	652.39	1.04%	[500] ug	g/L
Al 396.153†	131910.0	5081.42	3.85%	[25000] ug	g/L
As 193.696†	2221.0	28.02	1.26%	[5000] ug	g/L
Ba 233.527†	36744.6	417.37	1.14%	[1000] ug	J/L
Be 313.107†	1526354.7	31894.79	2.09%	[1000] ug	J/L
в 249.677†	226389.1	2403.31	1.06%	[10000] ug	g/L
Ca 317.933†	207163.9	7521.86	3.63%	[25000] ug	g/L
Cd 214.440†	25616.0	251.17	0.98%	[1000] ug	g/L
Co 228.616†	16048.9	150.94	0.94%	[1000] ug	g/L
Cr 267.716†	109910.1	998.86	0.91%	[5000] ug	g/L
Cu 324.752†	442020.7	10136.61	2.29%	[2000] ug	g/L
Fe 238.204†	2996.9	74.48	2.49%	[25000] ug	g/L
к 766.490†	94279.2	3378.83	3.58%	[50000] ug	g/L
Mg 285.213†	198727.0	7315.50	3.68%	[25000] ug	\mathfrak{g}/L
Mn 257.610†	905602.8	18109.28	2.00%	[2000] ug	J/L
Mo 202.031†	1732.4	12.81	0.74%	[1000] ug	ʃ/L
Na 589.592†	124039.1	4465.93	3.60%	[25000] ug	J/L
Ni 231.604†	55261.9	469.04	0.85%	[5000] ug	l/T
Pb 220.353†	9534.7	96.18	1.01%	[5000] ug	ſ/L
Sb 206.836†	3683.5	46.13	1.25%	[5000] ug	ſ/L
Se 196.026†	1783.0	23.12	1.30%	[5000] ug	ſ/L
SiO2 251.603†	202920.9	2161.70	1.07%	[20000] ug	ſ/L
Sr 421.552†	3914731.1	64454.32	1.65%	[1000] ug	ŗ/L
Ti 334.940†	428413.6	8607.96	2.01%	[1000] ug	l/L
Tl 190.801†	3934.2	30.36	0.77%	[5000] ug	r/L
V 290.880†	152836.9	1540.92	1.01%	[2000] ug	r/L
Zn 206.200†	51040.6	561.88	1.10%	[5000] ug	r/L

Calibration Summary

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Ag 328.068	1	Lin Thru 0	0.0	126.0	0.0000	1.000000	
Al 396.153	1	Lin, Calc Int	0.0	5.276	0.00000	1.00000	
As 193.696	1	Lin Thru 0	0.0	0.4442	0.00000	1.00000	
Ba 233.527	1	Lin Thru 0	0.0	36.74	0.00000	1.000000	
Be 313.107	1	Lin Thru 0	0.0	1526	0.00000	1.00000	
В 249.677	1	Lin Thru 0	0.0	22.64	0.0000	1.000000	
Ca 317.933	1	Lin Thru 0	0.0	8.287	0.0000	1.000000	
Cd 214.440	1	Lin Thru 0	0.0	25.62	0.00000	1.00000	•
Co 228.616	1	Lin Thru 0	0.0	16.05	0.0000	1.000000	
Cr 267.716	1	Lin Thru 0	0.0	21.98	0.00000	1.000000	
Cu 324.752	1	Lin Thru 0	0.0	221.0	0.00000	1.00000	
Fe 238.204	1	Lin, Calc Int	0.0	0.1199	0.0000	1.000000	
K 766.490	1 .	Lin Thru 0	0.0	1.886	0.00000	1.00000	
Mg 285.213	1	Lin, Calc Int	0.0	7.949	0.00000	1.00000	
Mn 257.610	1	Lin Thru 0	0.0	452.8	0.0000	1.000000	
Mo 202.031	1	Lin Thru 0	0.0	1.732	0.00000	1.00000	
Na 589.592	1	Lin, Calc Int	0.0	4.962	0.0000	1.000000	
Ni 231.604	1	Lin Thru 0	0.0	11.05	0.00000	1.00000	
Pb 220.353	1	Lin Thru 0	. 0.0	1.907	0.00000	1.000000	
Sb 206.836	1	Lin Thru 0	0.0	0.7367	0.0000	1.000000	

Method: ESAT_2	013_1.	0	Pa	ge 3		Date: 12/10/2013 1:	:02:19 PM
Se 196.026	1	Lin Thru 0	0.0	0.3566	0.00000	1.000000	
SiO2 251.603	1	Lin, Calc Int	0.0	10.15	0.00000	1.000000	
Sr 421.552	1	Lin, Calc Int	0.0	3915	0.00000	1.000000	
Ti 334.940	1	Lin Thru 0	0.0	428.4	0.00000	1.000000	
Tl 190.801	1	Lin Thru 0	0.0	0.7868	0.00000	1.000000	
V 290.880	1	Lin Thru 0	0.0	76.42	0.00000	1.000000	
Zn 206 200	1	Lin Thru O	0 0	10 21	0 00000	1 000000	

Sequence No.: 3 Sample ID: SEQ-ICV Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 3 Date Collected: 12/10/2013 1:02:59 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: SEQ-ICV

Analyte Back Pressure

Flow All 195.0 kPa 0.80 L/min

Mean Data: SEQ-ICV								
	Mean Corrected		Calib		_	Sample		
Analyte	Intensity				Conc.	Units	Std.Dev.	
Sc Axial Sc Radial		101.6		0.22 0.83				0.22% 0.82%
Sc Radial Ag 328.068†		100.4	% ug/L		250.3	ug/L	0.00	
	limits for Ag 328.	430.3 neo r	ug/L	102 209	256.3	ug/L	0.89	0.34%
Al 396.153†		12750		89.7	12750	ug/L	89.7	0.70%
·	limits for Al 396.				12750	ug/L	09.7	0.70%
	1141.8			13.7	2608	ua/L	13.7	0.53%
•	limits for As 193.				2000	ug/ L	13.7	0.550
Ba 233.527†				1.18	514.8	ua/L	1.18	0.23%
	limits for Ba 233.		J .	102.96%		3		
Be 313.107†		517.3	_	0.94	517.3	ug/L	0.94	0.18%
QC value within	limits for Be 313.3	107 F				3		
	116503.7			14.6	5146	ug/L	14.6	0.28%
QC value within	limits for B 249.6	77 Re	ecovery = 1	L02.92%				
Ca 317.933†		12580		155.4	12580	ug/L	155.4	1.24%
QC value within	limits for Ca 317.9	933 F						
		515.6		1.16	515.6	ug/L	1.16	0.23%
	limits for Cd 214.4							
	8277.9				516.3	ug/L	1.83	0.35%
	limits for Co 228.6					4		
Cr 267.716†	56865.7			7.6	2588	ug/L	7.6	0.29%
	limits for Cr 267.				1010	- /=		0 000
	222804.8			2.0	1012	ug/L	2.0	0.20%
	limits for Cu 324.7				10510	/T	225 0	1.80%
Fe 238.204†	1503.3 1 limits for Fe 238.2			225.8	12510	ug/L	225.8	1.006
K 766.490†		25400		154.4	25400	ug/L	154.4	0.61%
	limits for K 766.49		ug/L	01 619	23400	ug/L	134.4	0.010
	102236.2				12850	ua/L	142.7	1.11%
	limits for Mg 285.2		•		12050	ug/ L	142.7	
Mn 257.610†	469074.8			1.2	1035	ug/L	1.2	0.11%
	limits for Mn 257.6							
	882.9			0.83	507.2	ug/L	0.83	0.16%
	limits for Mo 202.0			·		3.		
Na 589.592†	63371.9			106.1	12660	ug/L	106.1	0.84%
QC value within	limits for Na 589.5			101.26%				
Ni 231.604†	28594.8			4.0	2587	ug/L	4.0	0.16%
	limits for Ni 231.6							
	4900.6				2565	ug/L	9.8	0.38%
QC value within	limits for Pb 220.3							
Sb 206.836†	1899.6			19.3	2545	ug/L	19.3	0.76%
	limits for Sb 206.8					-	4.0 =	
	912.3		-	10.7	2562	ug/L	10.7	0.42%
	limits for Se 196.0				10000	. /-	0 5	0 000
SiO2 251.603†		.0280		8.5	10280	ug/L	8.5	0.08%
	limits for SiO2 251				F01 7	/T	1 E0	0.30%
Sr 421.552†	2047184.2 5 limits for Sr 421.5	521.7		1.58	521.7	ug/L	1.58	0.306
Ti 334.940†		514.4		0.34	514.4	1107 /T	0.34	0.07%
	220391.3 limits for Ti 334.9				214.4	иу/ п	0.54	0.07.0
Tl 190.801†	2036.8	2592		30.6	2592	ug/L	30.6	1.18%
· · · · · · · · · · · · · · · · · · ·	limits for Tl 190.8				2572	~9/ -	30.0	
V 290.880†		1027		2.0	1027	ug/L	2.0	0.19%
	limits for V 290.88					J .		
£ - 101100 ,, 1011111								

Method: ESAT_2013_1.0

Page

Date: 12/10/2013 1:05:26 PM

Zn 206.200† 26533.6 2593 ug/L 7.9 QC value within limits for Zn 206.200 Recovery = 103.73% All analyte(s) passed QC.

2593 ug/L

7.9 0.31%

Sequence No.: 4
Sample ID: SEQ-SCV
Analyst:
Initial Sample Wt:
Dilution:

Autosampler Location: 10
Date Collected: 12/10/2013 1:06:06 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEO-SCV

 Analyte
 Back Pressure
 Flow

 All
 195.0 kPa
 0.80 L/min

Mean Data: SEQ-SCV Calib Mean Corrected Calib Sample

e Intensity Conc. Units Std.Dev. Conc. Units

a] 3901983 0 100 5 % 0 24 Analyte Std.Dev. RSD

 Sc Axial
 3901983.0
 100.5 %
 0.24

 Sc Radial
 432707.8
 102.5 %
 1.92

 Ag 328.068†
 31213.6
 251.3 ug/L
 1.65

 0.24% 1.87% 251.3 ug/L 1.65 0.66% QC value within limits for Ag 328.068 Recovery = 100.52% Al 396.153† 5058.7 936.5 ug/L 25.56 936.5 ug/L 25.56 2.73% QC value within limits for Al 396.153 Recovery = 93.65% As 193.696† 904.9 2057 ug/L 21.7 2057 ug/L 21.7 1.05% QC value within limits for As 193.696 Recovery = 102.84% 37382.9 1015 ug/L 4.9 Ba 233.527† 1015 ug/L 4.9 0.49% QC value within limits for Ba 233.527 Recovery = 101.55% Be 313.107† 1515710.8 992.9 ug/L 2.66 992.9 ug/L 2.66 0.27% QC value within limits for Be 313.107 Recovery = 99.29% B 249.677† 23471.3 1037 ug/L 12.1 1037 ug/L 12.1 1.17% QC value within limits for B 249.677 Recovery = 103.68% 910.1 ug/L Ca 317.933† 7984.8 910.1 ug/L 16.99 16.99 1.87% QC value within limits for Ca 317.933 Recovery = 91.01% Cd 214.440† 25890.5 1011 ug/L 1.0 1011 ug/L 1.0 0.10% QC value within limits for Cd 214.440 Recovery = 101.06% Co 228.616† 16445.8 1026 ug/L 4.9 1026 ug/L 4.9 0.48% QC value within limits for Co 228.616 Recovery = 102.56% Cr 267.716† 22388.8 1020 ug/L 5.6 1020 ug/L5.6 0.55% QC value within limits for Cr 267.716 Recovery = 101.96% Cu 324.752† 213036.8 965.8 ug/L 2.14 965.8 ug/L 2.14 0.228 QC value within limits for Cu 324.752 Recovery = 96.58% 899.3 ug/L Fe 238.204† 109.5 899.3 ug/L 33.30 33.30 3.70% QC value less than the lower limit for Fe 238.204 Recovery = 89.93% K 766.490† 9499.1 4795 ug/L 80.7 4795 ug/L 80.7 1.68% QC value within limits for K 766.490 Recovery = 95.90% Mg 285.213† 7861.1 979.6 ug/L 12.65 979.6 ug/L 12.65 1.29% QC value within limits for Mg 285.213 Recovery = 97.96% Mn 257.610† 455208.5 1004 ug/L 2.8 1004 ug/L 2.8 0.28% QC value within limits for Mn 257.610 Recovery = 100.45% Mo 202.031† 1742.2 1005 ug/L 1.6 1005 ug/L 1.6 0.16% QC value within limits for Mo 202.031 Recovery = 100.55% Na 589.592† 5027.5 930.9 ug/L 17.78 930.9 ug/L 17.78 1.91% QC value within limits for Na 589.592 Recovery = 93.09% Ni 231.604† 11354.2 1029 ug/L 6.0 1029 ug/L 6.0 0.59% QC value within limits for Ni 231.604 Recovery = 102.92% Pb 220.353† 3868.4 2022 ug/L 12.4 2022 ug/L 12.4 0.62% QC value within limits for Pb 220.353 Recovery = 101.08% Sb 206.836† 1496.0 2024 ug/L 16.0 2024 ug/L16.0 0.79% QC value within limits for Sb 206.836 Recovery = 101.22% Se 196.026† 351.1 986.4 ug/L 22.67 986.4 ug/L22.67 2.30% QC value within limits for Se 196.026 Recovery = 98.64% SiO2 251.603† 52595.7 5129 ug/L 34.2 34.2 5129 ug/L 0.67% QC value within limits for SiO2 251.603 Recovery = 102.58% 1014 ug/L Sr 421.552† 3970049.3 1014 ug/L 4.4 0.43% QC value within limits for Sr 421.552 Recovery = 101.36% Ti 334.940† 430349.3 1005 ug/L 3.0 1005 ug/L 3.0 0.30% QC value within limits for Ti 334.940 Recovery = 100.45% Tl 190.801† 4036.4 5136 ug/L 22.1 5136 ug/L 22.1 0.43% QC value within limits for Tl 190.801 Recovery = 102.71% V 290.880† 75711.0 992.4 ug/L 4.62 992.4 ug/L4.62 0.47% QC value within limits for V 290.880 Recovery = 99.24%

Method: ESAT_2013_1.0

Page '

Date: 12/10/2013 1:08:40 PM

Zn 206.200† 10593.9 1030 ug/L 3.1
 QC value within limits for Zn 206.200 Recovery = 103.00%
QC Failed. Continue with analysis.

1030 ug/L

3.1 0.30%

Sequence No.: 5
Sample ID: SEQ-ICB
Analyst:
Initial Sample Wt:
Dilution:

Autosampler Location: 1
Date Collected: 12/10/2013 1:09:20 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-ICB

AnalyteBack Pressure

Flow

195.0 kPa

0.80 L/min

Mean Data: SEQ-ICE					_		
	Mean Correcte	d Calib		_	Sample	~. 7 ~	
Analyte Sc Axial	Intensity	Conc. Units 99.26 % 101.7 %	Std.Dev.	Conc.	Units	Std.Dev.	3.32%
SC AXIAI	3853644.4	99.26 6 101 7 %	0.497				0.86%
SC RAGIAI	429342.8	101.7 % -0.9519 ug/L	0.07	0 0510	110 /T	0.56646	
Ag 320.000	-120.1	328.068 Recovery	- Not galgula	-0.9319	ug/L	0.30040	39.316
Al 396.153†			13.144		110 /T	13.144	00 109
		396.153 Recovery			ug/L	13.144	90.400
As 193.696†			8.5994	.tea	/T	8.5994	207 008
	1.8	4.136 ug/L 193.696 Recovery			ug/ь	0.3994	207.90%
Do 222 F274	4.0	0.1111 ug/L			ug/L	0.13800	12/ 269
		233.527 Recovery			ug/L	0.13600	124.200
		-0.1562 ug/L			/T	0 07174	15 029
					ug/L	0,0/1/4	43.320
	252.2	313.107 Recovery 11.14 ug/L	2.586	.tea 11 11	/T	2.586	22 219
B 249.677†	454.4	11.14 ug/L 249.677 Recovery =	2.300 - Not golgylot	11.14	ug/L	2.300	23.210
	limits for B	-0.1263 ug/L	NOT CAICUIAT	ea .	/T	. 1 40202	<u> </u>
	-1.0	317.933 Recovery	1.49383	-0.1203	ug/L	1.49363	<i>></i> 333,36
			= NOT Calcula		/T	0 15000	710 000
Cd 214.440†	-0.5	-0.0211 ug/L	0.15022		ug/L	0.15022	/10.626
		214.440 Recovery	= NOT CAICUIA		/T	0.10656	E0 020
			0.10656		ug/L	0.10656	32.236
		228.616 Recovery		rea	/T	0.29056	07 200
		0.3328 ug/L			ug/L	0.29056	67.30%
		267.716 Recovery	= Not calcula	tea 1 401	/=	1 0070	00 (40
Cu 324.752†	308.5				ug/L	1.2978	92.648
QC value within	limits for Cu	324.752 Recovery	= Not calcula		/=	6.668	15.74%
		42.36 ug/L		42.36	ug/L	6.668	15./48
		238.204 Recovery			,_	25 400	40 050
K 766.490†		76.10 ug/L	37.190		ug/L	37.190	48.8/%
		766.490 Recovery =		ed	/-	0 60005	
			0.62005		ug/L	0.62005	>999.9%
		285.213 Recovery			,_	0 04454	11 000
		0.0985 ug/L			ug/L	0.01174	11.928
		257.610 Recovery		ted		1.8306	00 500
Mo 202.031†	3.2	1.857 ug/L	1.8306		ug/L	1.8306	98.58%
		202.031 Recovery				0= 0=04	
		-4.176 ug/L			ug/L	25.0501	599./98
		589.592 Recovery				0.0540	406 550
Ni 231.604†	23.6		2.2719		ug/L	2.2719	106.57%
		231.604 Recovery	= Not calcula	ted			20 520
Pb 220.353†		2.073 ug/L	0.8030	2.073	ug/L	0.8030	38.73%
QC value within	limits for Pb	220.353 Recovery	= Not calcula	ted		4 = 000	446 040
Sb 206.836†	9.5	12.92 ug/L	15.028		ug/L	15.028	116.31%
QC value within	limits for Sb	206.836 Recovery	= Not calcula	ted			-4 -00
		-28.41 ug/L			ug/L	14.630	51.50%
		196.026 Recovery					
SiO2 251.603†	-39.3	-3.850 ug/L	1.7451		ug/L	1.7451	45.33%
	limits for Si	02 251.603 Recover		lated			
		0.383 ug/L	0.4960	0.383	ug/L	0.4960	129.46%
		421.552 Recovery				0 115-	45 040
Ti 334.940†			0.1165	0.736	ug/L	0.1165	15.81%
		334.940 Recovery				_	
	4.2	5.390 ug/L		5.390	ug/L	2.2620	41.97%
QC value within		190.801 Recovery		ted .		•	
V 290.880†		2.328 ug/L			ug/L	1.5116	64.92%
		290.880 Recovery =		-			

Method: ESAT_2013_1.0

Date: 12/10/2013 1:11:42 PM

0.4128 -0.021 ug/L

0.4128 >999.9%

Zn 206.200† -0.2 -0.021 ug/L 0.4128 -0 QC value within limits for Zn 206.200 Recovery = Not calculated All analyte(s) passed QC.

Sequence No.: 6 Sample ID: SEQ-CRL Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 11 Date Collected: 12/10/2013 1:12:21 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: SEQ-CRL

Analyte

Back Pressure Flow
197.0 kPa 0.80 L/min A11

Mean Data: SEQ-CRL								
	Mean Corrected		Calib			Sample		
Analyte Sc Axial Sc Radial	Intensity		Units		Conc.	Units	Std.Dev.	
SC AXIAI	3859955.3	99.42		0.364				0.37%
Sc Radial Ag 328.068†	409206.3	90.91	გ /Т	1.351	0.720	/T	1 0700	1.39%
					9.734	ug/L	1.0792	11.096
	limits for Ag 328 598.3			12.50	113.4	110 /T	12.50	11.02%
	limits for Al 396		-		113.4	ug/L	12.50	11,020
As 193.696†	24.4	56.40	-	2.998	56 40	ug/L	2.998	5.32%
	limits for As 193				50.40	ug/L	2.990	3.34.0
	381.6				10.34	110 /T.	0.103	0.99%
	limits for Ba 233				10.51	ug/ L	0.103	0.550
Be 313.107†	7543.7	4.937		0.0384	4.937	ug/L	0.0384	0.78%
·	limits for Be 313				2.30,	49,2		
B 249.677†		261.0		2.03	261.0	ua/L	2.03	0.78%
	limits for B 249.					J,		
	2107.0				252.7	ug/L	3.17	1.25%
	limits for Ca 317					3.		
Cd 214.440†		10.03		0.256	10.03	ug/L	0.256	2.55%
QC value within	limits for Cd 214	.440	Recovery =	100.28%				
Co 228.616†	173.1	10.81	ug/L	0.680	10.81	ug/L	0.680	6.29%
QC value within	limits for Co 228	.616	Recovery =	108.10%				
Cr 267.716†	224.3	10.26		0.093	10.26	ug/L	0.093	0.91%
QC value within	limits for Cr 267			102.57%				
Cu 324.752†	2050.2	9.329	<u> </u>		9.329	ug/L	0.3212	3.44%
	limits for Cu 324							
	13.0				107.7	ug/L	10.01	9.30%
	limits for Fe 238							
К 766.490†		1038		44.7	1038	ug/L	44.7	4.31%
	limits for K 766.				4050	/-	4 -	0.150
	8349.8			1.5	1050	ug/L	1.5	0.15%
	limits for Mg 285				10.45	/T	0.000	0 ((0,
Mn 257.610†		10.45		0.069	10.45	ug/L	0.069	0.66%
	limits for Mn 257				0 505	/T	0.6424	6.70%
	16.7 limits for Mo 202	9.585			9.585	ug/L	0.6424	0.706
	5124.4				1021	ug/L	12.0	1.16%
	limits for Na 589				1031	ug/L	12.0	1.100
Ni 231.604†		10.69		0.772	10 69	ug/L	0.772	7.22%
The state of the s	limits for Ni 231				10.05	ug/ n	0.772	7.220
	60.8			4.832	31 69	ug/L	4.832	15.25%
	limits for Pb 220				31.05	ug/L	4.052	13.230
Sb 206.836†		46.11		3.579	46 11	110 / Tu	3.579	7.76%
	limits for Sb 206				10.11	ug/ L	3.3.3	, , , , ,
	26.4				74.11	ug/L	27.298	36.83%
	limits for Se 196					97		
SiO2 251.603†	2536.9	249.3		3.36	249.3	ug/L	3.36	1.35%
	limits for SiO2 2							
Sr 421.552†		10.57		0.072	10.57	ug/L	0.072	0.69%
QC value within	limits for Sr 421		-			3.		
Ti 334.940†	21736.9	50.74	ug/L	0.349	50.74	ug/L	0.349	0.69%
QC value within	limits for Ti 334					_		
Tl 190.801;	45.1	58.01	ug/L	8.402	58.01	ug/L	8.402	14.48%
QC value within	limits for Tl 190			116.01%				
V 290.880†		49.69	ug/L	0.434	49.69	ug/L	0.434	0.87%

Method: ESAT_2013_1.0

Page 11

Date: 12/10/2013 1:14:45 PM

Zn 206.200† 534.9 52.18 ug/L 0.166 QC value within limits for Zn 206.200 Recovery = 104.37% All analyte(s) passed QC.

52.18 ug/L

0.166

0.32%

Sequence No.: 7
Sample ID: SEQ-IFA
Analyst:
Initial Sample Wt:
Dilution:

Autosampler Location: 12
Date Collected: 12/10/2013 1:15:25 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-IFA

 Analyte
 Back Pressure
 Flow

 All
 195.0 kPa
 0.80 L/min

Mean Data: SEQ-IFA
 Mean Corrected
 Calib

 Analyte
 Intensity
 Conc. Units
 Std.Dev.

 Sc Axial
 3782189.8
 97.42 %
 0.210

 Sc Radial
 417328.1
 98.83 %
 1.164

 Ag 328.068†
 -1624.3
 1.683 ug/L
 0.4856
 Sample Conc. Units Std.Dev. RSD 0.22% 1.18% 1.683 ug/L 0.4856 28.86% QC value within limits for Ag 328.068 Recovery = Not calculated Al 396.153† 303161.2 57390 ug/L 903.2 57390 ug/L 903.2 1.57% QC value within limits for Al 396.153 Recovery = 95.64% As 193.696† -70.5 57.25 ug/L 20.895 57.25 ug/L 20.895 36.50% QC value greater than the upper limit for As 193.696 Recovery = Not calculated Ba 233.527† -15.0 -4.966 ug/L 0.0557 -4.966 ug/L 0.0557 1.12% QC value within limits for Ba 233.527 Recovery = Not calculated Be 313.107† -198.7 -0.8364 ug/L 0.02208 -0.8364 ug/L 0.02208 2.64% QC value within limits for Be 313.107 Recovery = Not calculated B 249.677† 197.2 8.711 ug/L 0.9022 8.711 ug/L 0.9022 10.36% QC value within limits for B 249.677 Recovery = Not calculated 2310386.7 278800 ug/L 4172.4 278800 ug/L Ca 317.933† 4172.4 1.50% QC value within limits for Ca 317.933 Recovery = 92.93% -53.1 -3.660 ug/L 0.1574 Cd 214.440† -3.660 ug/L 0.1574 4.30% QC value within limits for Cd 214.440 Recovery = Not calculated 145.6 3.658 ug/L 0.3062 Co 228.616† 3.658 ug/L 0.3062 QC value within limits for Co 228.616 Recovery = Not calculated -64.8 -1.497 ug/L 0.1459 -1.497 ug/L 0.1459 9.75% Cr 267.716† QC value within limits for Cr 267.716 Recovery = Not calculated Cu 324.752† -8431.1 -0.7465 ug/L 0.22989 -0.7465 ug/L 0.22989 30.80% QC value within limits for Cu 324.752 Recovery = Not calculated 27035.4 225500 ug/L 337.2 225500 ug/L Fe 238.204† 337.2 0.15% QC value within limits for Fe 238.204 Recovery = 90.20% 287.0 53.97 ug/L 18.230 K 766.490+ 53.97 ug/L 18.230 33.78% QC value within limits for K 766.490 Recovery = Not calculated Mg 285.213† 1090360.4 137200 ug/L 1982.6 137200 ug/L 1982.6 1.45% QC value within limits for Mg 285.213 Recovery = 91.46% Mn 257.610† 480.3 -1.335 ug/L 0.0726 -1.335 ug/L 0.0726 5.44% QC value within limits for Mn 257.610 Recovery = Not calculated 23.9 -10.42 ug/L 1.533 -10.42 ug/L Mo 202.031† 1.533 14.71% QC value less than the lower limit for Mo 202.031 Recovery = Not calculated 589.592† 244085.1 49080 ug/L 652.7 49080 ug/L Na 589.592† 652.7 1.33% QC value within limits for Na 589.592 Recovery = 98.15% Ni 231.604† 376.6 -2.864 ug/L 0.0723 -2.864 ug/L 0.0723 2.52% QC value within limits for Ni 231.604 Recovery = Not calculated Pb 220.353† -96.8 16.60 ug/L 3.392 16.60 ug/L 3.392 20.44% QC value within limits for Pb 220.353 Recovery = Not calculated 43.2 51.25 ug/L 3.379 3.379 51.25 ug/L 6.59% Sb 206.836† QC value within limits for Sb 206.836 Recovery = Not calculated -17.4 -13.26 ug/L 36.050 -13.26 ug/L Se 196.026† 36.050 271.92% QC value within limits for Se 196.026 Recovery = Not calculated SiO2 251.603† 248.2 101.2 ug/L 2.30 101.2 ug/L 2.30 2.27% QC value within limits for SiO2 251.603 Recovery = Not calculated 58636.6 -0.907 ug/L 0.0478 -0.907 ug/L 0.0478 Sr 421.552† 5.27% QC value within limits for Sr 421.552 Recovery = Not calculated -146.8 -0.343 ug/L 0.0264 -0.343 ug/L0.0264 7.70% QC value within limits for Ti 334.940 Recovery = Not calculated Tl 190.801† 19.6 13.64 ug/L 12.309 13.64 ug/L 12.309 90.23% QC value within limits for Tl 190.801 Recovery = Not calculated V 290.880† 920.7 -17.03 ug/L 0.397 -17.03 ug/L 0.397 2.33% QC value within limits for V 290.880 Recovery = Not calculated

Method: ESAT_2013_1.0

Page 13

Date: 12/10/2013 1:17:28 PM

Zn $206.200\dagger$ 0.0 -0.873 ug/L 0.3983 -0.873 ug/L QC value within limits for Zn 206.200 Recovery = Not calculated QC Failed. Continue with analysis.

0.3983 45.60%

Sequence No.: 8
Sample ID: SEQ-IFB
Analyst:
Initial Sample Wt:
Dilution:

Autosampler Location: 13
Date Collected: 12/10/2013 1:19:08 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-IFB

 Analyte
 Back Pressure
 Flow

 All
 195.0 kPa
 0.80 L/min

Mean Data: SEQ-IFB								
_	Mean Corrected	1.	Calib	_		Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Sc Axial	3768847.4	97.07	8 .	0.092 0.453				0.09%
SC RACIAL	421005.0	99.90			. 246 8	/	1 02	0.45%
Ag 328.068†					316.7	ug/L	1.93	0.61%
QC value within					F70C0	/T	0.45 0	1 100
Al 396.153† QC value within		57060		845.8	. 5/060	ug/L	845.8	1.48%
		1078		25.1	1 Λ 7 Ω	ug/T	25.1	2.33%
QC value within					1076	ug/L	23.1	4.550
	10751.3				286 6	110 /T.	1.34	0.47%
QC value within					200.0	ад/ п	1.54	0.170
Be 313.107†		95.95		0.673	95 95	110 /T.	0.673	0.70%
QC value within				= 95.95%	, , , , ,	49/4	0,0,0	• • • • • •
	11683.5				516.1	ug/L	4.45	0.86%
QC value within						5,		
Ca 317.933†	2296480.7			4188.0	277100	ug/L	4188.0	1.51%
QC value within					•	3.		
		283.0	ug/L	1.92	283.0	ug/L	1.92	0.68%
QC value within	limits for Cd	214.440 H	Recovery =	94.33%		_		
Co 228.616†	4785.3	293.1	ug/L	1.98	293.1	ug/L	1.98	0.68%
QC value within	limits for Co	228.616 I	Recovery =	97.69%				
		296.9		2.19	296.9	ug/L	2.19	0.74%
QC value within	limits for Cr	267.716 H	Recovery =	. 98.98%				
Cu 324.752†	57741.8	299.8	ug/L	2.41	299.8	ug/L	2.41	0.80%
QC value within	limits for Cu	324.752 H	Recovery =	99.94%				
Fe 238.204†		227900		781.3	227900	ug/L	781.3	0.34%
QC value within								
		19850		80.8	19850	ug/L	80.8	0.41%
QC value within								
	1085406.5				136600	ug/L	1948.3	1.43%
QC value within							2 22	0 400
		189.5		0.22	189.5	ug/L	0.22	0.12%
QC value within					000	<i>;_</i>	F 00	0 060
·	531.1		•	5.82	282.8	ug/L	5.82	2.06%
QC value within					40640	/T	C02 7	1 /10
Na 589.592†	242182.1	48640		683.7	48640	ug/L	683.7	1.41%
QC value within					200 0	/T	2.82	0.98%
·		288.0		2.82	200.0	ug/ь	2.02	0.90%
QC value within Pb 220.353†	1771.1			5.76	. 001 2	110 /T	5.76	0.58%
QC value within					331.3	ug/L	5.70	0.50%
Sb 206.836†		981.7	_	46.44	991 7	ug/L	46.44	4.73%
QC value within					901.7	ug/L	40.44	4.750
	160.2				490 8	ug/L	27.36	5.58%
QC value within					400.0	ug/ H	27.50	3.300
SiO2 251.603†	5421.8	551.5		1.75	551.5	ua/L	1.75	0.32%
QC value within					331.3	ug/ 1		
Sr 421.552†	3990993.9	1003		1.9	1003	ug/L	1.9	0.19%
QC value within					1003	ug/ _		
Ti 334.940†	424726.6	991.4		1.12	991.4	ua/L	1.12	0.11%
QC value within						J		
Tl 190.801†	773.1	969.7		12.81	969.7	ug/L	12.81	1.32%
QC value within			-			J		
V 290.880†	23316.7	274.2		2.18	274.2	ug/L	2.18	0.79%
QC value within						<u> </u>		
-	_		-					

Method: ESAT_2013_1.0

Page 15

Date: 12/10/2013 1:21:21 PM

Zn 206.200† 2910.1 279.3 ug/L 2.32 QC value within limits for Zn 206.200 Recovery = 93.12% All analyte(s) passed QC.

279.3 ug/L

2.32 0.83%

Sequence No.: 9

Sample ID: 1312039-BLK1 Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 26 Date Collected: 12/10/2013 1:23:01 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1312039-BLK1

Analyte All

Back Pressure Flow

195.0 kPa 0.80 L/min

Mean Data: 13120								
_	Mean Corrected		Calib			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units		RSD
Sc Axial	3829382.5	98.63		0.326				.33%
Sc Radial	416187.1	98.56		0.836				.85%
Ag 328.068†	-29.7	-0.2331		0.94142	-0.2331	-	0.94142 403.	
Al 396.153†	67.5	12.79		10.856	12.79			.87%
As 193.696†	-2.0	-4.334	J .	2.2409	-4.334	- 3 -		.70%
Ba 233.527†	3.4	0.0919		0.24691	0.0919	J .	0.24691 268.	
Be 313.107†	-284.0	-0.1864	ug/L	0.03687	-0.1864	ug/L	0.03687 19.	.78%
B 249.677†	39.5	1.744	ug/L	1.0129	1.744	ug/L	1.0129 58.	.07%
Ca 317.933†	49.4	5.952	ug/L	1.8540	5.952	ug/L	1.8540 31.	.15%
Cd 214.440†	-3.2	-0.1244	ug/L	0.10721	-0.1244	ug/L	0.10721 86.	.17%
Co 228.616†	1.4	0.0839	ug/L	0.21735	0.0839	ug/L	0.21735 258.	.96%
Cr 267.716†	4.6	0.2112	ug/L	0.24441	0.2112	ug/L	0.24441 115.	.75%
Cu 324,752†	530.3	2.410	ug/L	0.1651	2.410	ug/L	0.1651 6.	.85%
Fe 238.204†	8.1	67.56	ug/L	53.106	67.56	ug/L	53.106 78.	.61%
K 766.490†	133.6	70.38	ug/L	30.584	70.38	ug/L	30.584 43.	.46%
Mg 285.213†	35.5	4.470	ug/L	0.6413	4.470	ug/L	0.6413 14.	.35%
Mn 257.610†	-9.9	-0.0215	ug/L	0.01810	-0.0215	ug/L	0.01810 84.	.01%
Mo.202.031†	0.2	0.0911	ug/L	2.67449	0.0911	ug/L	2.67449 >999	∂.9%
Na 589.592†	126.1	25.42	ug/L	9.571	25.42	ug/L	9.571 37.	.65%
Ni 231.604†	30.0	2.702	ug/L	1.9370	2.702	ug/L	1.9370 71.	.70%
Pb 220.353†	4.0	2.129	ug/L	2.5036	2.129	ug/L	2.5036 117.	. 58%
Sb 206.836†	10.8	14.71	ug/L	6.727	14.71	ug/L	6.727 45.	.72%
Se 196.026†	-9.3	-26,12	ug/L	17.811	-26.12	ug/L	17.811 68.	.20%
SiO2 251.603†	221.0	21.78	ug/L	1.536	21.78		1.536 7.	. 05%
Sr 421.552†	854.6	0.214		0.0967	0.214	ug/L	0.0967 45.	.17%
Ti 334.940†	69.8	0.163	ug/L	0.0359	0.163	ug/L	0.0359 22.	.03%
Tl 190.801†	4.3	5.561	ug/L	9.3392	5.561	ug/L	9.3392 167.	94%
V 290.880†	177.8	2.319	ug/L	0.4808	2.319	ug/L	0.4808 20.	.73%
Zn 206.200†	-0.6	-0.056	ug/L	0.4880	-0.056		0.4880 875.	.87%

Sequence No.: 10 Sample ID: 1312039-BS1 Analyst: S.VanOvermeiren Initial Sample Wt:

Dilution:

Autosampler Location: 27
Date Collected: 12/10/2013 1:26:04 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1312039-BS1

AnalyteBack Pressure

Flow

All

195.0 kPa

0.80 L/min

Mean Data: 1312039	-BS1						•	
	Mean Corrected		Calib			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
Sc Axial	3920316.8	101.0		0.26				0.26%
Sc Radial	428241.4	101.4	8	0.92				0.91%
Ag 328.068†	12411.7	100.3	J .	0.28	100.3	ug/L	0.28	0.28%
Al 396.153†	55444.5	10510	ug/L	241.5	10510	ug/L	241.5	2.30%
As 193.696†	35.1	95.88	ug/L	12.791	95.88	ug/L	12.791	13.34%
Ba 233.527†	3701.8	99.77	ug/L	0.550	99.77	ug/L	0.550	0.55%
Be 313.107†	153143.0	100.3	ug/L	0.42	100.3	ug/L	0.42	0.41%
B 249.677†	9.8	0.4326	ug/L	0.40957	0.4326		0.40957	94.67%
Ca 317.933†	86753.5	10450	ug/L	219.7	10450	ug/L	219.7	2.10%
Cd 214.440†	2548.3	99.41	ug/L	0.229	99.41	ug/L	0.229	0.23%
Co 228.616†	1601.1	99.74	${\tt ug/L}$	0.939	99.74	${\tt ug/L}$	0.939	0.94%
Cr 267.716†	2226.3	101.8	ug/L	0.30	101.8	ug/L	0.30	0.30%
.Cu 324.752†	20682.8	95.64	ug/L	0.729	95.64	${\tt ug/L}$	0.729	0.76%
Fe 238.204†	1232.9	10270	ug/L	43.7	10270	${\tt ug/L}$	43.7	0.43%
K 766.490†	19941.9	10510	ug/L	129.6	10510	ug/L	129.6	1.23%
Mg 285.213†	84671.6	10650	ug/L	245.3	10650	ug/L	245.3	2.30%
Mn 257.610†	44455.4	97.79	ug/L	0.307	97.79	ug/L	0.307	0.31%
Mo 202.031†	166.9	95.63	${\tt ug/L}$	4.430	95.63	ug/L	4.430	4.63%
Na 589.592†	51878.3	10430	ug/L	192.8	10430	${\tt ug/L}$	192.8	1.85%
Ni 231.604†	1122.8	100.4	ug/L	0.69	100.4	ug/L	0.69	0.68%
Pb 220.353†	188.4	99.41	ug/L	4.316	99.41	ug/L	4.316	4.34%
Sb 206.836†	64.5	84.67	ug/L	10.236	84.67	ug/L	10.236	12.09%
Se 196.026†	178.2	501.5	ug/L	6.44	501.5	${\tt ug/L}$	6.44	1.28%
SiO2 251.603†	105.9	-7.938		0.0812	-7.938	ug/L	0.0812	1.02%
Sr 421.552†	2142521.3	546.5	ug/L	1.50	546.5	ug/L	1.50	0.27%
Ti 334.940†	-22.5	-0.052	ug/L	0.0725	-0.052	${\tt ug/L}$	0.0725	138.31%
Tl 190.801†	86.7	108.1	ug/L	7.69	108.1	ug/L	7.69	7.11%
V 290.880†	7549.8	96.28	ug/L	0.861	96.28	ug/L	0.861	0.89%
Zn 206.200†	1032.0	99.09	ug/L	0.813	99.09	ug/L	0.813	0.82%

Matrix Recovery Check: 1312039-BS1

Analyte	Expected	Measured	Std.	Units	Recovery
Al 396.153 Ca 317.933 Fe 238.204 K 766.490 Mg 285.213 Na 589.592 Ag 328.068 As 193.696 Ba 233.527	Conc. 10110 10110 10170 10170 10100 10130 99.77 95.67 100.1	Conc. 10510 10450 10270 10510 10650 10430 100.3 95.88 99.77	Dev. 241.510 219.655 43.709 129.604 245.325 192.809 0.281 12.791 0.550	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	(%) 104.0 103.4 101.0 103.4 105.4 103.0 100.5 100.2 99.7
Be 313.107 Cd 214.440 Co 228.616 Cr 267.716 Cu 324.752 Mn 257.610 Mo 202.031 Ni 231.604 Pb 220.353 Sb 206.836 Se 196.026	99.81 99.88 100.1 100.2 102.4 99.98 100.1 102.7 102.1 114.7 473.9	100.3 99.41 99.74 101.8 95.64 97.79 95.63 100.4 99.41 84.67 501.5	0.416 0.229 0.939 0.304 0.729 0.307 4.430 0.687 4.316 10.236 6.440	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100.4 99.5 99.7 101.6 93.2 97.8 95.5 97.7 97.3 70.0 105.5

Method: ESAT_2013_1.0		Page	18		Date: 12/10/2013	1:28:28 PM
SiO2 251.603	5022	-7.938	0.081	ug/L	-0.6	
Sr 421.552	500.2	546.5	1.500	ug/L	109.3	
Tl 190.801	105.6	108.1	7.692	ug/L	102.6	
V 290.880	102.3	96.28	0.861	ug/L	94.0	
Zn 206,200	99.94	99.09	0.813	ug/L	99.1	

Sample Prep Vol:

Sequence No.: 11
Sample ID: C131107-04
Analyst: S.VanOvermeiren
Tnitial Sample Wt:

Initial Sample Wt:

Dilution:

Autosampler Location: 28
Date Collected: 12/10/2013 1:29:07 PM
Data Type: Original
Initial Sample Vol:

Nebulizer Parameters: C131107-04

Analyte Back Pressure

All 194.0 kPa

Flow 0.80 L/min

Mean Data: C131107	7-04							
	Mean Corrected		Calib			Sample		
Analyte	${ t Intensity}$	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	
Sc Axial	3925035.7	101.1	용	0.52				0.51%
Sc Radial	421655.7	99.85	용	0.453				0.45%
Ag 328.068†	-31.8	0.3033	ug/L	0.49150	0.3033	ug/L	0.49150	162.06%
Al 396.153†	273.1	45.37	ug/L	2.494	45.37	ug/L	2.494	5.50%
As 193.696†	-9.5	-22.00	ug/L	4.688	-22.00	ug/L	4.688	21.31%
Ba 233.527†	2170.4	58.50		0.226	58.50	ug/L	0.226	0.39%
Be 313.107†	21.9	-0.0513	ug/L	0.06779	-0.0513	ug/L	0.06779	132.03%
в 249.677†	-21.4	-0.9448	ug/L	0.58682 223.9	-0.9448	ug/L	0.58682	62.11%
Ca 317.933†	274015.9	33060	ug/L	223.9	33060	ug/L	223.9	0.68%
Cd 214.440†	-8.1	-0.2802	ug/L	0.12638	-0.2802	ug/L	0.12638	45.11%
Co 228.616†	-1.4	0.0531	ug/L	0.42628	0.0531	ug/L	0.42628	802.78%
Cr 267.716†	3.0	0.6005	ug/L	0.31093	0.6005	ug/L	0.31093	51.78%
Cu 324.752†	89.3	0.5531		0.19079	0.5531	ug/L	0.19079	34.50%
Fe 238.204†	4.0	28.39	ug/L	18.533	28.39	ug/L	18.533	65.29%
к 766.490†	1200.3	629.7	ug/L	20.80	629.7	ug/L	20.80	3.30%
Mg 285.213†	44046.4	5539	ug/L	23.8	5539	ug/L	23.8	0.43%
Mn 257.610†	5352.5	11.60	ug/L	0.183	11.60	ug/L	0.183	1.57%
Mo 202.031†	9.7	5.234	ug/L	2.8378	5.234	ug/L	2.8378	54.22%
Na 589.592†	12453.8	2503	ug/L	15.5	2503	ug/L	15.5	0.62%
Ni 231.604†	14.7	1.316	ug/L	0.4015	1.316	ug/L	0.4015	30.50%
Pb 220.353†	1.6	0.8457	ug/L	3.73550	0.8457	ug/L	3.73550	441.73%
sb 206.836†	-0.6	-2.700	ug/L	5.6156	-2.700	ug/L	5.6156	207.99%
Se 196.026†	-1.0	-4.826		9.2013	-4.826	ug/L	9.2013	190.64%
SiO2 251.603†	56668.7	5582	ug/L	52.3	5582	ug/L	52.3	0.94%
Sr 421.552†	1168268.9	298.1	ug/L	0.42	298.1	ug/L	0.42	0.14%
Ti 334.940†	87.2	0.203	ug/L	0.1134	0.203	ug/L	0.1134	55.76%
Tl 190.801†	7.8	7.582	ug/L	6.7346	7.582	ug/L	6.7346	88.82%
V 290.880†	-6.3	-1.163	ug/L	0.2890	-1.163	ug/L	0.2890	24.84%
Zn 206.200†	11.6	0.633	ug/L	1.0666	0.633	ug/L	1.0666	168.39%

Sequence No.: 12 Sample ID: 1312039-DUP1 Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 29

Date Collected: 12/10/2013 1:32:11 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1312039-DUP1 Analyte Back Pressure

All 195.0 kPa Flow 0.80 L/min

1212020 27771

Mean Data: 1312039	-DUP1							
	Mean Corrected		Calib			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev	
Sc Axial	3912416.4	100.8	%	1.01				1.00%
Sc Radial	429972.3	101.8	%	2.19				2.15%
Ag 328.068†	53.5	0.9714	ug/L	0.65486	0.9714	${\tt ug/L}$	0.65486	67.41%
Al 396.153†	311.4	52.68	\mathtt{ug}/\mathtt{L}	15.336	52.68	${\tt ug/L}$	15.336	29.11%
As 193.696†	-11.3	-26.24	\mathtt{ug}/\mathtt{L}	6.139	-26.24	${\tt ug/L}$	6.139	23.40%
Ba 233.527†	2185.5	58.92	${\tt ug/L}$	0.279	58.92	ug/L	0.279	0.47%
Be 313.107†	-26.6	-0.0826	${\tt ug/L}$	0.03786	-0.0826	ug/L	0.03786	45.83%
в 249.677†	-48.0	-2.120	${\tt ug/L}$	1.0039	-2.120	ug/L	1.0039	47.35%
Ca 317.933†	272440.2	32870	ug/L	1148.4	32870	ug/L	1148.4	3.49%
Cd 214.440†	-8.3	-0.2906	ug/L	0.11476	-0.2906	ug/L	0.11476	39.49%
Co 228.616†	2.6	0.3009	ug/L	0.57824	0.3009	ug/L	0.57824	192.17%
Cr 267.716†	-1.5	0.3909	ug/L	0.26536	0.3909	ug/L	0.26536	67.89%
Cu 324.752†	195.4	1.028	ug/L	0.4702	1.028	ug/L	0.4702	45.75%
Fe 238.204†	1.1	4.849		32.3002	4.849	ug/L	32.3002	666.17%
к 766.490†	1103.9	578.9	ug/L	34.15	578.9	ug/L	34.15	5.90%
Mg 285.213†	43351.5	5452	ug/L	198.2	5452	ug/L	198.2	3.63%
Mn 257.610†	5360.5	11.62	ug/L	0.180	11.62	ug/L	0.180	1.55%
Mo 202.031†	7.0	3.707	ug/L	3.3287	3.707	ug/L	3.3287	89.80%
Na 589.592†	12197.9	2452	ug/L	99.8 .	2452	ug/L	99.8	4.07%
Ni 231.604†	10.4	0.9339	ug/L	1.00438	0.9339	ug/L	1.00438	107.54%
Pb 220.353†	-1.8	-0.9298		1.47861	-0.9298	ug/L	1.47861	159.03%
Sb 206.836†	1.9	0.7353	ug/L	6.84360	0.7353	ug/L	6.84360	930.67%
Se 196.026†	-3.9	-12.94	ug/L	36.111	-12.94	ug/L	36.111	279.07%
SiO2 251.603†	56947.5	5610	ug/L	68.6	5610	ug/L	68.6	1.22%
Sr 421.552†	1156329.5	295.1	ug/L	2.75	295.1	ug/L	2.75	0.93%
Ti 334.940†	118.5	0.276	ug/L	0.1397	0.276	ug/L	0.1397	50.54%
Tl 190.801†	6.7	6.248	ug/L	4.9699	6.248	ug/L	4.9699	79.54%
V 290.880†	31.4	-0.667	ug/L	1.0691	-0.667	ug/L	1.0691	160.32%
Zn 206.200†	11.4	0.622	ug/L	0.4461	0.622	ug/L	0.4461	71.76%

Duplicate Check: 1312039-DUP1

Analyte	Expected	Measured	std.	Units	Difference
	Conc.	Conc.	Dev.		(%)
Sc Radial	99.85	101.8	2.192	ક	2.0
Al 396.153	45.37	52.68	15.336	${\tt ug/L}$	14.9
Ca 317.933	33060	32870	1148.379	ug/L	0.6
Fe 238.204	28.39	4.849	32.300	ug/L	141.6
K 766.490	629.7	578.9	34.152	ug/L	8.4
Mg 285.213	5539	5452	198.173	ug/L	1.6
Na 589.592	2503	. 2452	99.816	ug/L	2.1
Sc Axial	101.1	100.8	1.009	8	0.3
Ag 328.068	0.3033	0.9714	0,655	ug/L	104.8
As 193.696	-22.00	-26.24	6.139	ug/L	-17.6
Ba 233.527	58.50	58.92	0.279	ug/L	0.7
Be 313.107	-0.0513	-0.0826	0.038	${\tt ug/L}$	-46.7
в 249.677	-0.9448	-2.120	1.004	ug/L	-76.7
Cd 214.440	-0.2802	-0.2906	0.115	ug/L	-3.6
Co 228.616	0.0531	0.3009	0.578	ug/L	140.0
Cr 267.716	0.6005	0.3909	0.265	${\tt ug/L}$	42.3
Cu 324.752	0.5531	1.028	0.470	ug/L	60.1
Mn 257.610	11.60	11.62	0.180	ug/L	0.2
Mo 202.031	5.234	3.707	3.329	ug/L	34.2
Ni 231.604	1.316	0.9339	1.004	ug/L	34.0

Method: ESAT_2013_1.0		Page	21		Date: 12/10	/2013 1:34:34 PM
Pb 220.353	0.8457	-0.9298	1.479	ug/L	-4222.6	
Sb 206.836	-2.700	0.7353	6.844	ug/L	-349.7	
Se 196.026	-4.826	-12.94	36.111	ug/L	-91.3	
SiO2 251.603	5582	5610	68.553	ug/L	0.5	
Sr 421.552	298.1	295.1	2.753	ug/L	1.0	
Ti 334.940	0.203	0.276	0.140	ug/L	30.4	
Tl 190.801	7.582	6.248	4.970	ug/L	19.3	
V 290.880	-1.163	-0.667	1.069	ug/L	-54.3	
7n 206 200	0 633	0 622	0 446	110 /T.	1 9	

<u>.</u>

Sequence No.: 13

Sample ID: SEQ-SRD1 @5X Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution: 5X

Autosampler Location: 30

Date Collected: 12/10/2013 1:35:13 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: SEQ-SRD1 @5X

Analyte Back Pressure
All 194.0 kPa

Flow 0.80 L/min

All 194.0 kPa 0.80 L/min

Mean Data: SEQ-SRD								
	Mean Corrected		Calib			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
Sc Axial	3881026.7	99.96		0.303				0.30%
Sc Radial	414876.6	98.25		1.466				1.49%
Ag 328.068†	-107.0	-0.7425	-	1.20486	-3.712	_	6.0243	
Al 396.153†	105.8	18.69		12.466	93.46	J.	62.329	66.69%
As 193.696†	4.2	9.363	_	10.5237	46.82	-	52.619	
Ba 233.527†	439.1	11.84		0.193	59.21	-	0.965	1.63%
Be 313.107†	-77.3	-0.0639	ug/L	0.01996	-0.3197	ug/L	0.09979	31.22%
в 249.677†	-20.4	-0.9014	ug/L	0.56556	-4.507	ug/L	2.8278	62.74%
Ca 317.933†	55389.3	6683	ug/L	77.1	33420	ug/L	385.5	1.15%
Cd 214.440†	-7.0	-0.2686	ug/L	0.05473	-1.343	ug/L	0.2737	20.38%
Co 228.616†	-3.9	-0.2165	ug/L	0.44642	-1.083	ug/L	2.2321	206.19%
Cr 267.716†	2.7	0.2189	ug/L	0.50594	1.095	ug/L	2.5297	231.08%
Cu 324.752†	235.3	1.092	ug/L	0.5676	5.458	ug/L	2.8381	52.00%
Fe 238.204†	2.0	15.43	ug/L	17.928	77.16	ug/L	89.641	116.17%
к 766.490†	313.0	164.3	ug/L	19.97	821.5	ug/L	99.85	12.15%
Mg 285.213†	8885.7	1118	ug/L	15.9	5588	ug/L	79.7	1.43%
Mn 257.610†	1071.6	2.323	ug/L	0.0347	11.62	ug/L	0.174	1.49%
Mo 202.031†	2.9	1.619	ug/L	1.0396	8.093	ug/L	5.1981	64.23%
Na 589.592†	2493.8	501.3	ug/L	7.73	2507	ug/L	38.6	1.54%
Ni 231.604†	12.8	1.157	ug/L	0.4481	5.783	ug/L	2.2403	38.74%
Pb 220.353†	8.7	4.584	ug/L	4.2083	22.92	ug/L	21.042	91.81%
Sb 206.836†	4.5	5.772		2.0772	28.86	ug/L	10.386	35.99%
Se 196.026†	-11.9	-33.69	ug/L	18.103	-168.5	ug/L	90.51	53.73%
SiO2 251.603†	11378.4		ug/L	5.1	5604	ug/L	25.5	0.45%
Sr 421.552†	233810.7	59.67	ug/L	0.048	298.3	ug/L	0.24	0.08%
Ti 334.940†	9.0	0.021	ug/L	0.0683	0.105	ug/L	0.3413	323.59%
Tl 190.801†	2.5	2.829		10.6866	14.14	ug/L	53.433	377.79%
V 290.880†	127.2	1.457		0.2760	7.287	ug/L	1.3800	18.94%
Zn 206.200†	3.1	0.205		0.7390	1.025	ug/L	3.6950	360.55%

Dilution Check: SEQ-SRD1 @5X

Analyte	Expected Conc.	Measured Conc.	Std. Dev.	Units	Difference (%)
Sc Radial	19.97	98.25	1.466	ક	392.0
Al 396.153	9.073	18.69	12.466	ug/L	106.0
Ca 317.933	6612	6683	77.110	ug/L	1.1
Fe 238.204	5.677	15.43	17.928	ug/L	171.8
к 766.490	125.9	164.3	19.970	ug/L	30.5
Mg 285.213	1108	1118	15.937	ug/L	0.9
Na 589.592	500.7	501.3	7.725	ug/L	0.1
Sc Axial	20.22	99.96	0.303	8	394.4
Ag 328.068	0,0607	-0.7425	1.205	ug/L	1324.1
As 193.696	-4.401	9.363	10.524	ug/L	-312.8
Ba 233.527	11.70	11.84	0.193	ug/L	1.2
Be 313.107	-0.0103	-0.0639	0.020	ug/L	-522.5
В 249.677	-0.1890	-0.9014	0.566	ug/L	-377.0
Cd 214.440	-0.0560	-0.2686	0.055	ug/L	-379.3
Co 228.616	0.0106	-0.2165	0.446	ug/L	2138.7
Cr 267.716	0.1201	0.2189	0.506	ug/L	82.3
Cu 324.752 '	0.1106	1.092	0.568	ug/L	886.8
Mn 257.610	2.320	2.323	0.035	ug/L	0.1
Mo 202.031	1.047	1.619	1.040	ug/L	54.6
Ni 231.604	0.2633	1.157	0.448	ug/L	339.3

Method: ESAT_2013_1.0		Page	23		Date: 12/10/2	013 1:37:37 PM
Pb 220.353	0.1691	4.584	4.208	ug/L	2610.0	
Sb 206.836	-0.5400	5.772	2.077	ug/L	-1168.9	
Se 196.026	-0.9653	-33.69	18.103	ug/L	-3390.4	
SiO2 251.603	1116	1121	5.091	ug/L	0.4	
Sr 421.552	59.63	59.67	0.048	ug/L	0.1	•
Ti 334.940	0.041	0.021	0.068	ug/L	48.2	
Tl 190.801	1.516	2.829	10.687	ug/L	86.5	
V 290.880	-0.233	1.457	0.276	ug/L	-726.3	
Zn 206.200	0.127	0.205	0.739	ug/L	61.8	

Sequence No.: 14 Sample ID: 1312039-MS1

Analyst: S. Van Overmeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 31

Date Collected: 12/10/2013 1:38:16 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1312039-MS1

Analyte Back Pressure
All 195.0 kPa

Flow
0.80 L/min

Mean Data: 1312039-MS1								
	Mean Corrected		Calib			\mathtt{Sample}		
Analyte	${ t Intensity}$		Units	Std.Dev.	Conc.	Units	$\mathtt{Std.Dev.}$	RSD
Sc Axial	3946346.8	101.6		1.57				1.54%
Sc Radial	425717.0	100.8	૪	0.38				0.37%
Ag 328.068†	12244.7	99.48	${\tt ug/L}$	2.426	99.48	ug/L	2.426	2.44%
Al 396.153†	56774.3	10760	${\tt ug/L}$	76.2	10760	ug/L	76.2	0.71%
As 193.696†	11.5	42.45	ug/L	3.089	42.45	${ m ug/L}$	3.089	7.28%
Ba 233.527†	5720.5	154.2	ug/L	3.57	154.2	ug/L	3.57	2.31%
Be 313.107†	152405.9	99.71	ug/L	2.220	99.71	ug/L	2.220	2.23%
В 249.677†	-102.6	-4.533	${\tt ug/L}$	1.8378	-4.533	ug/L	1.8378	40.54%
Ca 317.933†	356696.6	43020	ug/L	245.9	43020	${\tt ug/L}$	245.9	0.57%
Cd 214.440†	2496.4	97.42	ug/L	1.140	97.42	${\tt ug/L}$	1.140	1.17%
Co 228.616†	1575.1	98.25	ug/L	1.437	98.25	ug/L	1.437	1.46%
Cr 267.716†	2204.0	101.2	ug/L	1.60	101.2	ug/L	1.60	1.58%
Cu 324.752†	20416.2	94.60	ug/L	3.004	94.60	ug/L	3.004	3.17%
Fe 238.204†	1260.2	10500	ug/L	130.1	10500	ug/L	130.1	1.24%
к 766.490†	21485.1	11320	ug/L	128.4	11320	ug/L	128.4	1.13%
Mg 285.213†	127871.9	16080	ug/L	90.2	16080	ug/L	90.2	0.56%.
Mn 257.610†	48816.2	107.2	ug/L	2.62	107.2	ug/L	2.62	2.45%
Mo 202.031†	171.4	97.84		1.746	97.84	ug/L	1.746	1.78%
Na 589.592†	64612.4	12990	ug/L	115.3	12990	ug/L	115.3	0.89%
Ni 231.604†	1112.2	99.40	ug/L	1.171	99.40	ug/L	1.171	1.18%
Pb 220.353†	181.7	96.03	ug/L	1.919	96.03	ug/L	1.919	2.00%
Sb 206.836†	56.6	72.10	ug/L	3.881	72.10	ug/L	3.881	5.38%
Se 196.026†	184.6	517.4	ug/L	37.87	517.4	ug/L	37.87	7.32%
SiO2 251.603†	54970.5	5397	ug/L	125.8	5397	ug/L	125.8	2.33%
Sr 421.552†	3214340.9	820.0	ug/L	15.38	820.0	ug/L	15.38	1.88%
Ti 334.940†	7.4	0.017	ug/L	0.1020	0.017	ug/L	0.1020	589.34%
Tl 190.801†	85.8	104.8	ug/L	3.19	104.8	ug/L	3.19	3.04%
V 290.880†	7426.5	93.58	ug/L	3.245	93.58	ug/L	3.245	3.47%
Zn 206.200†	1025.7	98.03	ug/L	1.497	98.03	ug/L	1.497	1.53%

Matrix Recovery Check: 1312039-MS1

Analyte	Expected Conc.	Measured Conc.	Std. Dev.	Units	Recovery (%)
Al 396.153	10150	10760	76.212	ug/L	106.1
Ca 317.933	43160	43020	245.933	ug/L	98.6
Fe 238.204	10130	10500	130.065	ug/L	103.6
к 766.490	10730	11320	128.379	ug/L	105.9
Mg 285.213	15640	16080	90.164	ug/L	104.4
Na 589.592	12600	12990	115.322	ug/L	103.8
Ag 328.068	100.3	99.48	2.426	ug/L	99.2
As 193.696	78.00	42.45	3.089	ug/L	64.4
Ba 233.527	158.5	154.2	3.569	ug/L	95.7
Be 313.107	99.95	99.71	2.220	ug/L	99.8
Cd 214.440	99.72	97.42	1.140	ug/L	97.7
Co 228.616	100.1	98.25	1.437	ug/L	98.2
Cr 267.716	100.6	101.2	1.603	ug/L	100.6
Cu 324.752	100.6	94.60	3.004	${\tt ug/L}$	94.1
Mn 257.610	111.6	107.2	2.622	ug/L	95.6
Mo 202.031	105.2	97.84	1.746	ug/L	92.6
Ni 231.604	101.3	99.40	1.171	ug/L	98.1
Pb 220.353	100.8	96.03	1.919	ug/L	95.2
sb 206.836	97.30	72.10	3.881	ug/L	74.8
Se 196.026	495.2	517.4	37.875	ug/L	104.4

Method: ESAT_2013_1.0		Page	25		Date: 12/10/2	013 1:40:48 PM
SiO2 251.603	10580	5397	125.803	ug/L	-3.7	:
Sr 421.552	798.1	820.0	15.379	ug/L	104.4	
Tl 190.801	107.6	104.8	3.189	ug/L	97.2	
V 290.880	98.84	93.58	3.245	ug/L	94.7	
Zn 206.200	100.6	98.03	1.497	ug/L	97.4	

Sequence No.: 15 Sample ID: C131107-07 Analyst: S.VanOvermeiren Initial Sample Wt:

Dilution:

Autosampler Location: 32 Date Collected: 12/10/2013 1:41:28 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-07

Back Pressure Flow
196.0 kPa 0.80 L/min Analyte All

Mean Data: C131107	-07			·				· <u></u>
iidaii badai dibilit,	Mean Corrected		Calib				Sample	•
Analyte	Intensity	Conc.	Units		Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3909572.0	100.7	ક		0.90			0.89%
Sc Radial	431333.6	102.1	8		2.25			2.20%
Ag 328.068†	-43.7	0.3018	ug/L		0.31042	0.3018	ug/L	0.31042 102.85%
Al 396.153†	229.0	36.77	ug/L		5.505	36.77	ug/L	5.505 14.97%
As 193.696†	-9.0	-21.10	ug/L		5.797	-21.10	ug/L	5.797 27.47%
Ba 233.527†	2282.7	61.47	ug/L		0.489	61.47	ug/L	0.489 0.80%
Be 313.107†	61.2	-0.0359	ug/L		0.01138	-0.0359	ug/L	0.01138 31.68%
в 249.677†	-89.8	-3.966	ug/L		1.1131	-3.966	ug/L	1.1131 28.06%
Ca 317.933†	315525.1	38070	ug/L		1376.4	38070	ug/L	1376.4 3.62%
Cd 214.440†	-7.1	-0.2394			0.06219	-0.2394	ug/L	0.06219 25.97%
Co 228.616†	0.4	0.1811			0.18489	0.1811	ug/L	0.18489 102.08%
Cr 267.716†	7.2	0.8393	${\tt ug/L}$		0.48276	0.8393	ug/L	0.48276 57.52%
Cu 324.752†	145.1	0.8263	${\tt ug/L}$		0.32911	0.8263	ug/L	0.32911 39.83%
Fe 238.204†	2.2	12.83	ug/L		18.123	12.83	ug/L	18.123 141.24%
к 766.490†	1275.9	665.8	${\tt ug/L}$		19.78	665.8	ug/L	19.78 2.97%
Mg 285.213†	46844.0	5891	${\tt ug/L}$		208.2	5891	ug/L	208.2 3.53%
Mn 257.610†	26108.9	57.42	ug/L		0.773	57.42	ug/L	0.773 1.35%
Mo 202.031†	6.0	3.112	${\tt ug/L}$		1.1395	3.112	ug/L	1.1395 36.62%
Na 589.592†	13395.5	2692	${\tt ug/L}$		89.6	2692	ug/L	89.6 3.33%
Ni 231.604†	7.4	0.6572	${\tt ug/L}$		0.26914	0.6572	ug/L	0.26914 40.95%
Pb 220.353†	4.1	2.127	ug/L		1.9622	2.127		1.9622 92.26%
Sb 206.836†	0.0	-2.212	ug/L		4.5732	-2.212	ug/L	4.5732 206.74%
Se 196.026†	-1.1	-5.224	ug/L		31.8908	-5.224	ug/L	31.8908 610.43%
SiO2 251.603†	60058.1	5916	ug/L		70.6	5916	${\tt ug/L}$	70.6 1.19%
Sr 421.552†	1419466.0	362.3	ug/L		1.41	362.3	ug/L	1.41 0.39%
Ti 334.940†	-26.9	-0.063	ug/L		0.0388	-0.063	ug/L	0.0388 61.87%
Tl 190.801†	2.2	0.193	üg/L		1.3052	0.193	ug/L	1.3052 675.09%
V 290.880†	-3.9	-1.347			0.5068	-1.347	ug/L	0.5068 37.62%
Zn 206.200†	34.4	2.779	ug/L		1.1756	2.779	ug/L	1.1756 42.30%

Sequence No.: 16 Sample ID: 1312039-MS2 Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 33

Date Collected: 12/10/2013 1:44:32 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1312039-MS2

Analyte Back Pres All 194.0 kPa

Back Pressure Flow
194.0 kPa 0.80 L/min

Mean Data: 1312039_MG2

Mean Data: 1312039-MS2								
	Mean Corrected		Calib			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	${\tt Std.Dev.}$	RSD
Sc Axial	3815888.8	98.29	ક	0.857				0.87%
Sc Radial	424559.8	100.5	ક	1.95				1.94%
Ag 328.068†	12464.9	101.3	ug/L	0.99	101.3	ug/L	0.99	0.98%
Al 396.153†	55409.1	10500	${\tt ug/L}$	410.7	10500	ug/L	410.7	3.91%
As 193.696†	6.0	29.51	ug/L	5.898	29.51	ug/L	5.898	19.99%
Ba 233.527†	5958.0	160.5	ug/L	1.16	160.5	ug/L	1.16	0.72%
Be 313.107†	154770.2	101.2	${\tt ug/L}$	0.25	101.2	ug/L	0.25	0.24%
в 249.677†	-241.8	-10.68	ug/L	0.969	-10.68	ug/L	0.969	9.07%
Ca 317.933†	391253.5	47190	ug/L	1706.2	47190	ug/L	1706.2	3.62%
Cd 214.440†	2552.6	99.62	ug/L	0.752	99.62	ug/L	0.752	0.75%
Co 228.616†	1605.2	100.2	ug/L	1.96	100.2	ug/L	1.96	1.96%
Cr 267.716†	2236.6	102.7	ug/L	1.81	102.7	ug/L	1.81	1.76%
Cu 324.752†	21232.7	98.29	ug/L	0.800	98.29	ug/L	0.800	0.81%
Fe 238.204†	1225.6	10210	ug/L	224.1	10210	ug/L	224.1	2.20%
к 766.490†	21187.0	11160	ug/L	361.3	11160	ug/L	361.3	3.24%
Mg 285.213†	129018.4	16230	ug/L	596.0	16230	ug/L	596.0	3.67%
Mn 257.610†	70128.8	154.3	ug/L	1.41	154.3	ug/L	1.41	0.91%
Mo 202.031†	174.2	99.48	ug/L	3.521	99.48	ug/L	3.521	3.54%
Na 589.592†	64757.0	13020	ug/L	434.8	13020	ug/L	434.8	3.34%
Ni 231.604†	1152.8	103.1	ug/L	2.27	103.1	ug/L	2.27	2.20%
Pb 220.353†	179.4	94.62	ug/L	3.493	94.62	ug/L	3.493	3.69%
Sb 206.836†	63.3	80.80	ug/L	3.422	80.80	ug/L	3.422	4.24%
Se 196.026†	195.9	548.9	ug/L	11.82	548.9	ug/L	11.82	2.15%
SiO2 251.603†	60078.8	5899	ug/L	55.3	5899	ug/L	55.3	0.94%
Sr 421.552†	3514301.8	896.6	ug/L	4.58	896.6	ug/L	4.58	0.51%
Ti 334.940†	-40.7	-0.095	ug/L	0.0370	-0.095	ug/L	0.0370	38.98%
Tl 190.801†	84.6	102.9	ug/L	9.67	102.9	ug/L	9.67	9.40%
V 290.880†	7737.8	97.48	ug/L	1.000	97.48	ug/L	1.000	1.03%
Zn 206.200†	1074.9	102.7	ug/L	0.59	102.7	ug/L	0.59	0.57%

Matrix Recovery Check: 1312039-MS2

Analyte	Expected Conc.	Measured Conc.	Std. Dev.	Units	Recovery (%)
Al 396.153	10140	10500	410.718	ug/L	103.6
Ca 317.933	48170	47190	1706.187	ug/L	90.3
Fe 238.204	10110	10210	224.052	ug/L	100.9
К 766.490	10770	11160	361.285	ug/L	103.9
Mg 285.213	15990	16230	596.044	ug/L	102.3
Na 589.592	12790	13020	434.751	ug/L	102.2
Ag 328.068	100.3	101.3	0.990	ug/L	101.0
As 193.696	78.90	29.51	5.898	ug/L	50.6
Ba 233.527	161.5	160.5	1.158	${\tt ug/L}$	99.1
Be 313.107	99.96	101.2	0.247	ug/L	101.3
Cd 214.440	99.76	99.62	0.752	ug/L	99.9
Co 228.616	100.2	100.2	1.959	ug/L	100.0
Cr 267.716	100.8	102.7	1.805	ug/L	101.9
Cu 324.752	100.8	98.29	0.800	ug/L	97.5
Mn 257.610	157.4	154.3	1.407	ug/L	96.8
Mo 202.031	103.1	99.48	3.521	ug/L	96.4
Ni 231.604	100.7	103.1	2.271	ug/L	102.5
Pb 220.353	102.1	94.62	3.493	ug/L	92.5
Sb 206.836	97.79	80.80	3.422	ug/L	83.0
Se 196.026	494.8	548.9	11.818	ug/L	110.8

Method: ESAT_2013_1.0 Page 28			Date: 12/10/2013 1:47:05 PM			
SiO2 251.603 Sr 421.552 Tl 190.801 V 290.880 Zn 206.200	10920 862.3 100.2 98.65 102.8	5899 896.6 102.9 97.48 102.7	55.266 4.580 9.667 1.000 0.588	ug/L ug/L ug/L ug/L ug/L	-0.3 106.9 102.7 98.8 99.9	

Sequence No.: 17

Sample ID: C131107-01 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Zn 206.200†

Autosampler Location: 34 Date Collected: 12/10/2013 1:47:45 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-01 @10X

Back Pressure

Flow

Analyte 195.0 kPa A11 0.80 L/min

______ Mean Data: C131107-01 @10X Calib Mean Corrected Sample Intensity Conc. Units Std.Dev. 3823351.7 98.48 % 0.853 Conc. Units Std.Dev. RSD Analyte 3823351.7 98.48 %
411509.6 97.45 % 1.434

-146.6 -0.6001 ug/L 1.03706 -6.001 ug/L
178.5 32.48 ug/L 8.300 324.8 ug/L
-4.6 -10.94 ug/L 8.098 -109.4 ug/L
207.5 5.166 ug/L 0.1061 51.66 ug/L
-135.5 -0.1427 ug/L 0.06700 -1.427 ug/L
-188.7 -8.334 ug/L 1.1205 -83.34 ug/L
209078.3 25230 ug/L 293.4 252300 ug/L
-6.1 -0.2273 ug/L 0.13735 -2.273 ug/L
-7 1 -0.3582 ug/L 0.69787 -3.582 ug/L
0.42592 7.490 ug/L Sc Axial 0.87% Sc Radial 1.47% -6.001 ug/L 10.3706 172.83% 324.8 ug/L 83.00 25.55% Ag 328.068† 83.00 25.55% 80.98 74.02% Al 396.153† As 193.696† Ba 233.527† 1.061 2.05% 0.6700 46.97% 11.205 13.44% 2933.8 1.16% Be 313.107† B 249.677† Ca 317.933† 1.3735 60.42% Cd 214.440+ Co 228.616† 6.9787 194.84% 0.09/8/ 0.1490 ug/L 0.42592 1.759 ug/L 0.0410 28.28 ug/L 19.622 669.7 ug/L 38.40 2029 ug/L 7.490 ug/L 17.59 ug/L 282.8 ug/L 4.2592 56.86% Cr 267.716† 359.1 Cu 324.752† 0.410 2.33% 196.22 69.38% Fe 238.204† 3.8 1307.4 384.0 5.73% 285.9 1.41% 6697 ug/L K 766.490† 20290 ug/L 809.2 ug/L 51.79 ug/L 14400 ug/L 32.70 ug/L 2029 ug/L 80.92 ug/L 16136.6 2029 ug/L 28.6 20290 ug/L 36698.6 80.92 ug/L 0.088 809.2 ug/L 9.1 5.179 ug/L 1.7123 51.79 ug/L 7176.9 1440 ug/L 11.1 14400 ug/L 35.9 3.270 ug/L 1.1823 32.70 ug/L -1.5 -0.8990 ug/L 3.61213 -8.990 ug/L 7.2 8.379 ug/L 3.4689 83.79 ug/L 3.9 10.31 ug/L 11.491 103.1 ug/L 14231.9 1398 ug/L 8.4 13980 ug/L 352784.2 345.4 ug/L 0.40 3454 ug/L 66.4 0.155 ug/L 0.0623 1.549 ug/L 0.3 -1.183 ug/L 6.5351 -11.83 ug/L 214.1 1.749 ug/L 0.6048 17.49 ug/L -0.6 -0.544 ug/L 0.3237 -5.443 ug/L 16136.6 Mg 285,213† 0.88 0.2 17.123 33.07% Mn 257.610† 36698.6 Mo 202.031† Na 589.592† 110.7 11.823 36.16% Ni 231.604† 36.1213 401.80% Pb 220.353† 34.689 41.40% Sb 206.836† 3.9 10.31 ug/L 14231.9 1398 ug/L 1352784.2 345.4 ug/L 66.4 0.155 ug/L 0.3 -1.183 ug/L 114.91 111.43% Se 196.026† SiO2 251.603† 84.4 0.60% 4.0 0.12% Sr 421.552† 0.6229 40.22% Ti 334.940† 65.351 552.47% Tl 190.801† 214.1 1.749 ug/L -0.6 -0.544 ug/L 6.048 34.58% 3.2372 59.47% V 290.880†

0.3237

-5.443 ug/L

Page 30

Sequence No.: 18 Sample ID: Blank

Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 35

Date Collected: 12/10/2013 1:50:49 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: Blank

Analyte All

Back Pressure Flow

196.0 kPa 0.80 L/min

Mean Data: Blank							
3 1 t	Mean Corrected	-	Calib	61 T D		Sample	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3826280.2	98.55		0.894			0.91%
Sc Radial	409992.2	97.09		1.721			1.77%
Ag 328.068†	17.2	0.1349		0.19082	0.1349		0.19082 141.48%
Al 396.153†	25.4	4.767		6.2059	4.767	J .	6.2059 130.17%
As 193.696†	3.7	8.439	.	10.1999	8.439	J .	10.1999 120.86%
Ba 233.527†	2.2	0.0643		0.12157	0.0643	٠.	0.12157 189.14%
Be 313.107†	34.1	0.0223		0.01936	0.0223	ug/L	0.01936 86.63%
В 249.677†	-26.0	-1.148	ug/L	0.8440	-1.148	ug/L	0.8440 73.53%
Ca 317.933†	54.0	6.531	ug/L	0.9645	6.531	ug/L	0.9645 14.77%
Cd 214.440†	-4.4	-0.1736	ug/L	0.14335	-0.1736	ug/L	0.14335 82.56%
Co 228.616†	3.3	0.2035	ug/L	0.22761	0.2035	ug/L	0.22761 111.83%
Cr 267.716†	-0.4	-0.0159	ug/L	0.04634	-0.0159	ug/L	0.04634 290.96%
Cu 324.752†	9.6	0.0422	ug/L	0.18914	0.0422	ug/L	0.18914 448.20%
Fe 238.204†	1.4	11.70	ug/L	46.792	11.70	ug/L	46.792 399.89%
к 766.490†	34.9	18.36	ug/L	42.510	18.36	ug/L	42.510 231.55%
Mg 285.213†	1.0	0.1350	ug/L	1.61961	0.1350	ug/L	1.61961 >999.9%
Mn 257.610†	-16.0	-0.0343	ug/L	0.03929	-0.0343	ug/L	0.03929 114.42%
Mo 202.031†	0.4	0.2236	ug/L	0.87456	0.2236	ug/L	0.87456 391.14%
Na 589.592†	41.6	8.424	ug/L	3.0675	8.424	ug/L	3.0675 36.42%
Ni 231.604†	18.5	1.673	ug/L	0.7741	1.673	ug/L	0.7741 46.28%
Pb 220.353†	2.1	1.141	ug/L	1.1403	1.141	ug/L	1.1403 99.90%
Sb 206.836†	-2.1	-2.840	ug/L	3.6598	-2.840	ug/L	3.6598 128.86%
Se 196:026†	-8.1	-22.85	ug/L	13.968	-22.85	ug/L	13.968 61.13%
SiO2 251.603†	203.8	19.96	ug/L	0.573	19.96	ug/L	0.573 2.87%
Sr 421.552†	1243.2	0.317	ug/L	0.1064	0.317	ug/L	0.1064 33.57%
Ti 334.940†	20.3	0.047	ug/L	0.0615	0.047	ug/L	0.0615 129.94%
Tl 190.801†	4.6	5.895		7.1933	5.895	ug/L	7.1933 122.02%
V 290.880†	28.8	0.382		0.7151	0.382		0.7151 187.37%
Zn 206.200†	-2.9	-0.281	-	0.5648	-0.281	ug/L	0.5648 200.97%

Sequence No.: 19 Sample ID: SEQ-CCV Analyst: Initial Sample Wt:

Autosampler Location: 3
Date Collected: 12/10/2013 1:53:54 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-CCV

Analyte All

Dilution:

Back Pressure 194.0 kPa **Flow** 0.80 L/min

Woon Date: CEC					· · · · · · · · · · · · · · · · · · ·				
Mean Data: SEÇ	_	Mean Corrected		Calib	•		Sample		
Analyte Sc Axial		Intensity			Std Dev	Conc	Units	Std.Dev.	RSD
Sc Axial		3864866.9	99.55	8	0.755	001101		Bou.Bov.	0.76%
Sc Radial			98.95		0.221				0.22%
Ag 328.068†		31915.3				257.3	ua/L	4.68	1.82%
		limits for Ag					- J.		
Al 396.153†			12700		171.4	12700	uq/L	171.4	1.35%
QC value wi	ithin	limits for Al	396.153	Recovery	= 101.64%		3.		
As 193.696†			2587		11.0	2587	ug/L	11.0	0.42%
QC value wi	ithin	limits for As	193.696	Recovery	= 103.48%		_		
Ba 233.527†		18900.7	511.5	ug/L	8.45	511.5	ug/L	8.45	1.65%
QC value wi	ithin	limits for Ba	233.527	Recovery :			- (
Be 313.107†		785826.0	514.6	ug/L	2.92	514.6	ug/L	2.92	0.57%
QC value wi	thin	limits for Be	313.107 I	Recovery :	= 102.92%				
в 249.677†		116215.0	5133	ug/L	103.0	5133	ug/L	103.0	2.01%
QC value wi	thin	limits for B 24	19.677 Re	ecovery =	102.67%				
Ca 317.933†		105220.0	12640	ug/L	153.5	12640	ug/L	153.5	1.22%
QC value wi	thin	limits for Ca	317.933 I	Recovery :	= 101.08%				
		13261.8			8.91	517.6	ug/L	8.91	1.72%
QC value wi	thin	limits for Cd 2	214.440 H	Recovery :	= 103.52%				
Co 228.616†		8317.7	518.7	ug/L	8.32	518.7	ug/L	8.32	1.60%
QC value wi	thin	limits for Co 2			= 103.75%				
Cr 267.716†			2595		45.3	2595	ug/L	45.3	1.75%
		limits for Cr 2							
		222101.3				1009	ug/L	20.2	2.00%
QC value wi	thin	limits for Cu 3	324.752 · B	Recovery =	= 100.86%				
Fe 238.204†			12510		87.9	12510	ug/L	87.9	0.70%
		limits for Fe 2							
		47157.5			212.0	24850	ug/L	212.0	0.85%
		limits for K 76							
			12800		152.5	12800	ug/L	152.5	1.19%
		limits for Mg 2							
Mn 257.610†			1031		1.9	1031	ug/L	1.9	0.18%
		limits for Mn 2							
		874.3				502.2	ug/L	3.47	0.69%
	thin	limits for Mo 2				10500			
Na 589.592†		62668.3	12520		92.0	12520	ug/L	92.0	0.73%
		limits for Na 5				0505	/-	46 7	1 010
			2585		46.7	2585	ug/L	46.7	1.81%
	thin	limits for Ni 2	31.604 1			2552	/T	25.0	1 010
Pb 220.353†	4-1-2		2552		25.9	2552	ug/L	25.9	1.01%
	tnin	limits for Pb 2				2504	/T	2.4.0	1 200
Sb 206.836†	L-1- 3		2504		34.9	2504	ug/L	34.9	1.39%
		limits for Sb 2 911.7	2561	Recovery =	100.15%	25.61	uq/L	10.2	0.40%
		limits for Se 1				Z301	ug/L	10.2	0.40%
SiO2 251.603†	CIIIII	104267.8	10260		188.8	10260	ug/L	188.8	1.84%
	+hin	limits for SiO2				10200	ug/L	100.0	1.040
Sr 421.552†	CIIIII	2033287.3	518.1		1.56	518 1	ug/L	1.56	0.30%
	thin	limits for Sr 4				. 510.1	~9/1	1.50	0.500
Ti 334.940†	C11111	220434.5	514.5		9.04	514.5	ua/L	9.04	1.76%
	thin	limits for Ti 3				514.5	-5/	J. 0 1	,00
Tl 190.801†	U11111	2029.3	2583		15.2	2583	ua/L	15.2	0.59%
	thin	limits for Tl 1		.		2505	~3/	13.2	3.330
V 290.880†		78794.2	1030		18.9	1030	ua/L	18.9	1.84%
	thin	limits for V 29				, =	J .		
~ :				· · · - <u>·</u>	-				

Method: ESAT_2013_1.0

Page 32

Date: 12/10/2013 1:56:21 PM

2586 ug/L

43.0 1.66%

Page 33

Sequence No.: 20 Sample ID: SEQ-CCB Analyst: Initial Sample Wt: Dilution: Autosampler Location: 1
Date Collected: 12/10/2013 1:57:01 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-CCB

 Analyte
 Back Pressure
 Flow

 All
 196.0 kPa
 0.80 L/min

Mean Data: SEQ-CCB								
Analyte Sc Axial Sc Radial Ag 328.068†	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Sc Axial	3734141.9	96.18	8	0.588				0.61%
Sc Radial	406501.3	96.27	ક	0.151				0.16%
Ag 328.068†	-239.9	-1.899	ug/L -	0.9517	-1.899	ug/L	0.9517	50.12%
QC value within	limits for Ag	328.068	Recovery	= Not calcula	.tea			
Al 396.153† QC value within		17.24		8.962	1/.24	ug/L	8.962	51.97%
		0.4019		8.79832	n 1019	ug /T.	8.79832	~aaa as
QC value within				= Not calcula	ted ted	ug/L	0.75052	2333.38
	5.4					ua/L	0.04109	29.21%
QC value within							0.01203	
Be 313.107†	-713.5	-0.4680	ug/L			ug/L	0.03046	6.51%
QC value within	limits for Be	313.107	Recovery	= Not calcula	ted			
В 249.677†	118.6	5.238	ug/L	1.9945	5.238	ug/L	1.9945	38.08%
QC value within				Not calculat	ed	,		
Ca 317.933†		-0.0465		1.22719	-0.0465	ug/L	1.22719	>999.9%
QC value within			Recovery	= Not calcula	ted			
Ca 21.1101		-0.1691		0.02526		ug/L	0.02526	14.94%
QC value within	limits for Cd 2	214.440 I	Recovery	= Not calcula	ted	/-	0 54304	454 630
Co 228.616†	-5.6	-0.3517	ug/L	0.54384	-0.3517	ug/L	0.54384	154.63%
QC value within	3.1			0.09992		nor/T	0 00002	60 600
Cr 267.716† QC value within						ug/L	0.09992	00.000
Cu 324.752†				0.5285		110 /T.	0 5285	17 01%
QC value greater		r limit fo	ug/11 or Cu 324	752 Recover	x = Not ca	ug/L alculated	0.5205	17.010
Fe 238.204†				14.891	35.25	na/L	14.891	42.24%
QC value within					ted			
	190.6	100.3	ug/L	26.23	100.3	ug/L	26.23	26.15%
QC value within					ed			
Mg 285.213†	3.6	0.4491	ug/L	0.62228	0.4491	ug/L	0.62228	138.57%
QC value within				= Not calcula	ted			
Mn 257.610†		0.0643		0.04976		ug/L	0.04976	77.43%
QC value within								
				2.2417		ug/L	2.2417	217.28%
QC value within						/-	40 506	E4 E00
Na 589.592†		14.19		10.586		ug/L	10.586	74.59%
QC value within						/T	0 2044	7.01%
Ni 231.604† QC value within				0.3944		ug/L	0.3944	7.016
Pb 220.353†	-4.6	231.004 F 2 119	recovery	- NOC CAICUIA		1107 /T.	2.7763	115 119
QC value within						ug/L	2.7705	113.116
Sb 206.836†		27,94		7.279		11a/L	7.279	26.06%
QC value within						ug/L	,,,,,	20.000
	-4.9				-13.70	ua/L	11.560	84.40%
QC value within			•			3 /		
SiO2 251.603†	-42.7	-3.955		2.6668	-3.955	ug/L	2.6668	67.44%
QC value within	limits for SiO2	251.603	Recover	y = Not calcui	lated	_		
Sr 421.552†	3812.3	0.971		0.0851	0.971	ug/L	0.0851	8.76%
QC value within								
Ti 334.940†	187.1	0.437		0.1612	0.437	ug/L	0.1612	36.90%
QC value within								00
Tl 190.801†	3.5	4.621		4.3252	4.621	ug/L	4.3252	93.61%
QC value within						/T	0 5650	0 010
V 290.880†	437.9	5.724		0.5670	5.724	ug/L	0.5670	9.91%
QC value within	limits for V 29	90.880 Re	ecovery =	Not calculate	ea			

Method: ESAT_2013_1.0

Page 34

Date: 12/10/2013 1:59:23 PM

-3.6 -0.363 ug/L 0.3636 -0.363 ug/L Zn 206.200† QC value within limits for Zn 206.200 Recovery = Not calculated QC Failed. Continue with analysis.

0.3636 100.15%

Sequence No.: 21

Sample ID: C131107-09 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Autosampler Location: 36 Date Collected: 12/10/2013 2:00:02 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-09 @10X

Back Pressure Flow
194.0 kPa 0.80 L/min Analyte All

______ Mean Data: C131107-09 @10X Mean Corrected Calib Sample Intensity Conc. Units
3838085.3 98.86 % Conc. Units Analvte Std.Dev. Std.Dev. RSD 3838085.3 98.86 % 1.381

-126.9 -0.4127 ug/L 0.93618 -4.127 ug/L

74.2 14.00 ug/L 6.608 140.0 ug/L

4.9 10.46 ug/L 5.016 104.6 ug/L

72.1 1.459 ug/L 0.0922 14.59 ug/L

65.1 -0.0113 ug/L 0.01641 -0.1126 ug/L

-38.0 -1.681 ug/L 0.2832 -16.81 ug/L

194666.0 23490 ug/L 559.1 234900 ug/L

63.1 2.474 ug/L 0.1557 24.74 ug/L

2.6 0.2325 ug/L 0.31443 2.325 ug/L

2.3 0.3948 ug/L 0.17652 3.948 ug/L

297.5 1.517 ug/L 0.6835 15.17 ug/L

1.2 6.730 ug/L 35.82 2592 ug/L

540.3 259.2 ug/L 35.82 2592 ug/L 0.778 Sc Axial 0.79% Sc Radial 1.43% -4.127 ug/L 9.3618 226.84% 140.0 ug/L 66.08 47.19% 104.6 ug/L 50.16 47.95% Ag 328.068† Al 396.153† As 193.696† 0.922 6.32% 0.16409 145.67% -16.81 ug/L 2.832 16.05 234900 ug/T Ba 233.527† Be 313.107† В 249.677† 5590.6 1 557 Ca 317.933† 2.6
2.3
297.5
1.5
1.2
6.730 ug.
540.3
259.2 ug/L
16361.9
2057 ug/L
91883.6
202.8 ug/L
9.0
5.142 ug/L
5930.0
1188 ug/L
21.2
1.981 ug/L
-4.0
-2.484 ug/L
4.4
4.350 ug/L
-8.5
-24.17 ug/L
16023.8
1573 ug/L
392.3 ug/L
0.046 ug/L
2.106 ug/L
0.011 ug/L
0.011 ug/L
0 ug/L 1.557 6.29% Cd 214.440† 3.1443 135.22% Co 228.616† 2.325 ug/L
3.948 ug/L
0.6835 15.17 ug/L
15.3167 67.30 ug/L
35.82 2592 ug/L
48.8 20570 ug/L
2.66 2028 ug/L
2.2757 51.42 ug/L
28.1 11880 ug/L
1.3888 19.81 ug/L
3.7334 -24.84 ug/L
6.616 -241 7 ug/L Cr 267.716† 1.7652 44.71% 6.835 45.04% 67.30 ug/L 153.167 227.58% 2592 ug/L 358 2 12 000 Cu 324.752† Fe 238.204† 358.2 13.82% 487.6 2.37% K 766.490† Mg 285.213† 26.6 1.31% Mn 257.610† 22.757 44.26% Mo 202.031† Na 589.592† 280.9 2.36% 13.888 70.10% Ni 231.604† Pb 220.353† -24.84 ug/L 37.334 150.30% 43.50 ug/L 104.637 240.53% 37.334 150.30% Sb 206.836† -241.7 ug/L 15730 ug/L 3923 ug/L 0.460 ug/L Se 196.026† 6.616 66.16 27.37% SiO2 251.603† 24.3 0.48 242.6 1.54% 4.8 0.12% Sr 421.552†

 0.48
 3923 ug/L
 4.8
 0.120

 0.0445
 0.460 ug/L
 0.4454 96.84%

 2.4494
 21.06 ug/L
 24.494 116.29%

 1.0849
 -0.106 ug/L
 10.8491 >999.9%

 5.04
 4918 ug/L
 50.4
 1.02%

 Ti 334.940† Tl 190.801† V 290.880† Zn 206.200†

Sequence No.: 22

Sample ID: C131107-12 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Autosampler Location: 37

Date Collected: 12/10/2013 2:03:08 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: C131107-12 @10X

 Analyte
 Back Pressure
 Flow

 All
 196.0 kPa
 0.80 L/min

.....

Mean Data: C13110	7-12 @10X						
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3827487.6	98.58	용	0.338			0.34%
Sc Radial	413882.1	98.01	ક	0.931			0.95%
Ag 328.068†	-125.2	-0.3868	ug/L	0.41457	-3.868	ug/L	4.1457 107.17%
Al 396.153†	94.3	18.06	ug/L	7.830	180.6	ug/L	78.30 43.35%
As 193:696†	-4.8	-11.39	${\tt ug/L}$	12.891	-113.9	ug/L	128.91 113.14%
Ba 233.527†	80.0	1.671	ug/L	0.1620	16.71	ug/L	1.620 9.69%
Be 313.107†	-204.4	-0.1877	ug/L	0.01145	-1.877	ug/L	0.1145 6.10%
В 249.677†	-112.0	-4.946	ug/L	0.7424	-49.46	ug/L	7.424 15.01%
Ca 317.933†	192821.6	23260	ug/L	217.0	232600	ug/L	2169.5 0.93%
Cd 214.440†	54.8	2.147	ug/L	0.1950	21.47	ug/L	1.950 9.08%
Co 228.616†	5.4	0.4089	ug/L	0.24440	4.089	ug/L	2.4440 59.78%
Cr 267.716†	1.4	0.3541	${\tt ug/L}$	0.18249	3.541	ug/L	1.8249 51.53%
Cu 324.752†	438.2	2.161	ug/L	0.6568	21.61	ug/L	6.568 30.40%
Fe 238.204†	1.6	9.819	ug/L	30.1420	98.19	ug/L	301.420 306.99%
к 766.490†	573.3	276.5	ug/L	13.06	2765	ug/L	130.6 4.72%
Mg 285.213†	16299.5	2049	ug/L	20.0	20490	ug/L	199.8 0.98%
Mn 257.610†	90213.9	199.1	ug/L	1.59	1991	${\tt ug/L}$	15.9 0.80%
Mo 202.031†	7.3	4.184	ug/L	2.9719	41.84	ug/L	29.719 71.03%
Na 589.592†	5923.3	1187	ug/L	27.7	11870	ug/L	276.8 2.33%
Ni 231.604†	34.1	3.148	ug/L	1.1573	31.48	ug/L	11.573 36.76%
Pb 220.353†	-8.4	-4.811		4.6658	-48.11		46.658 96.99%
Sb 206.836†	1.9	0.9002	ug/L	3.75348	9.002	ug/L	37.5348 416.96%
Se 196.026†	-3.7	-10.85	ug/L	11.013	-108.5	ug/L	110.13 101.49%
SiO2 251.603†	16178.0	1588	ug/L	15.2	15880	ug/L	151.9 0.96%
Sr 421.552†	1559779.1	398.3		0.99	3983	ug/L	9.9 0.25%
Ti 334.940†	26.3	0.061	ug/L	0.0565	0.614	ug/L	0.5653 92.02%
Tl 190.801†	4.5	3.785	ug/L	4.2770	37.85	ug/L	42.770 112.99%
V 290.880†	133.1	0.596	.	0.5277	5.961	.	5.2775 88.53%
Zn 206.200†	4620.2	452.0	ug/L	2.37	4520	ug/L	23.7 0.52%

Sequence No.: 23

Sample ID: C131107-14 @10X Analyst: S.VanOvermeiren Initial Sample Wt:

Dilution: 10X

Autosampler Location: 38 Date Collected: 12/10/2013 2:06:13 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-14 @10X

Analyte Back Pressure All 194.0 kPa

Flow 0.80 L/min

Mean Data: C131107	'-14 @10X							
	Mean Corrected		Calib			Sample	•	
Analyte	${ t Intensity}$		Units	Std.Dev.	Conc.	Units	Std.Dev	
Sc Axial	3813891.2	98.23		0.552				0.56%
Sc Radial	415883.0	98.49		0.779				0.79%
Ag 328.068†	-135.7	-0.4629	_	0.14154	-4.629		1.4154	30.57%
Al 396.153†	122.0	23.20	ug/L	14.910	232.0	ug/L	149.10	64.27%
As 193.696†	-1.4	-3.805	J .	7.1039	-38.05		71.039	
Ba 233.527†	78.4		ug/L	0.0314	16.20	ug/L	0.314	1.94%
Be 313.107†	-178.0	-0.1717		0.04757	-1.717	ug/L	0.4757	27.71%
в 249.677†	-156.3	-6.902		0.4318	-69.02	J .	4.318	6.26%
Ca 317.933†	199503.3	24070		533.6	240700		5336.1	2.22%
Cd 214.440†	30.2	1.190	ug/L	0.1285	11.90	${\tt ug/L}$	1.285	10.81%
Co 228.616†	0.3	0.0948	.	0.28302	0.9484	ug/L	2.83016	298.43%
Cr 267.716†	3.4	0.4654		0.07848	4.654	ug/L	0.7848	16.86%
Cu 324.752†	223.6	1.186		0.0480	11.86	ug/L	0.480	4.05%
Fe 238.204†	0.9	4.206	${\tt ug/L}$	26.2629	42.06	ug/L	262.629	624.38%
к 766.490†	640.9	312.2		38.29	3122	ug/L	382.9	12.26%
Mg 285.213†	17317.4	2177	${\tt ug/L}$	42.5	21770	${\tt ug/L}$	425.3	1.95%
Mn 257.610†	82340.9	181.7	ug/L	1.42	1817	ug/L	14.2	0.78%
Mo 202.031†	4.4	2.523		1.0325	25.23	ug/L	10.325	40.92%
Na 589.592†	6132.0	1229		35.6	12290	ug/L	356.4	2.90%
Ni 231.604†	32.2	2.979	${\tt ug/L}$	1.0229	29.79	ug/L	10.229	34.33%
Pb 220.353†	-5.7	-3.394		6.1369	-33.94	ug/L	61.369	180.82%
Sb 206.836†	4.4	4.215	J .	9.2027	42.15		92.027	218.35%
Se 196.026†	-5·.6	-16.06	ug/L	24.911	-160.6	ug/L	249.11	155.10%
SiO2 251.603†	16467.5	1616	ug/L	14.1	16160	ug/L	140.5	0.87%
Sr 421.552†	1570920.0	401.1	ug/L	1.71	4011	ug/L	17.1	0.43%
Ti 334.940†	20.0	0.047	.	0.0892	0.468	ug/L	0.8923	190.73%
Tl 190.801†	0.5	-1.217	-	2.9510	-12.17	ug/L	29.510	242.39%
V 290.880†	140.6	0.674	ug/L	0.5198	6.738	ug/L	5.1981	77.15%
Zn 206.200†	4092.3	400.3	ug/L	1.63	4003	ug/L	16.3	0.41%

Sequence No.: 24

Sample ID: C131107-16 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Zn 206.200†

Autosampler Location: 39

Date Collected: 12/10/2013 2:09:17 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-16 @10X

Analyte A11

Back Pressure

Flow

194.0 kPa 0.80 L/min

______ Mean Data: C131107-16 @10X Mean Corrected Calib Sample | Tatemsity | Std. Dev. | Conc. | Units | Std. Dev. | Conc. | Conc Intensity Conc. Units Std.Dev.
3833715.0 98.74 % 0.800 Conc. Units Std.Dev. RSD 0.800 2.777 0.81% Sc Axial Sc Radial Ag 328.068† Al 396.153† As 193.696† Ba 233.527† Be 313.107† Be 313.2 B 249.677† Ca 317.933† Cd 214.440+ Co 228.616† Cr 267.716† Cu 324.752† Fe 238.204† K 766.490† Mg 285.213† Mn 257.610+ Mo 202.031† Na 589.592† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† SiO2 251.603† Sr 421.552† Ti 334.940† Tl 190.801† V 290.880†

Date: 12/10/2013 2:14:52 PM

Sequence No.: 25 Sample ID: C131107-19 Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 40 Date Collected: 12/10/2013 2:12:20 PM Data Type: Original

Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-19

Analyte

Back Pressure Flow
194.0 kPa 0.80 L/min All

Mean Data: C131107-19

Mean Data: CISIIO								
<u>.</u>	Mean Corrected		Calib	_		Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev	
Sc Axial	3783228.1	97.44		0.902				0.93%
Sc Radial	402236.7	95.26		0.681				0.72%
Ag 328.068†	-12.7	1.162	٠.	0.5951	1.162	-	0.5951	51.23%
Al 396.153†	235.4	36.92	${\tt ug/L}$	9.788	36.92	-	9.788	26.51%
As 193.696†	-38.4	-87.71	\mathtt{ug}/\mathtt{L}	9.262	-87.71	${\tt ug/L}$	9.262	10.56%
Ba 233.527†	2248.2	60.00	ug/L	0.434	60.00	ug/L	0.434	0.72%
Be 313.107†	-285.9	-0.3194	\mathtt{ug}/\mathtt{L}	0.06636	-0.3194	ug/L	0.06636	20.78%
в 249.677†	-273.1	-12.06	ug/L	1.262	-12.06	ug/L	1.262	10.46%
Ca 317.933†	518301.5	62540	ug/L	943.5	62540	ug/L	943.5	1.51%
Cd 214.440†	5.1	0.2548	ug/L	0.02772	0.2548	ug/L	0.02772	10.88%
Co 228.616†	1.8	0.3542	ug/L	0.13227	0.3542	ug/L	0.13227	37.34%
Cr 267.716†	1.4	0.9210	ug/L	0.29265	0.9210	ug/L	0.29265	31.77%
Cu 324.752†	499.7	2.619	ug/L	0.4379	2.619	ug/L	0.4379	16.72%
Fe 238.204†	6.4	44.62	ug/L	39.658	44.62	ug/L	39.658	88.88%
к 766.490†	2801.6	1454	ug/L	29.2	1454	ug/L	29.2	2.01%
Mg 285.213†	73757.2	9275	ug/L	128.2	9275	ug/L	128.2	1.38%
Mn 257.610†	85092.5	187.5	ug/L	1.40	187.5	ug/L	1.40	0.75%
Mo 202.031†	11.0	5.914	ug/L	1.3079	5.914	ug/L	1.3079	22.12%
Na 589.592†	24544.3	4932	ug/L	62.4	4932	ug/L	62.4	1.26%
Ni 231.604†	59.5	5.439	ug/L	1.5395	5.439	ug/L	1.5395	28.30%
Pb 220.353†	-8.7	-5.001	ug/L	3.5762	-5.001	ug/L	3.5762	71.51%
Sb 206.836†	5.5	3.463	ug/L	3.1105	3.463	ug/L	3.1105	89.81%
Se 196.026†	-4.9	-16.63	ug/L	24.992	-16.63	ug/L	24.992	150.30%
SiO2 251.603†	92642.0		ug/L	85.6	9121	ug/L	85.6	0.94%
Sr 421.552†	2902153.4		ug/L	4.38	740.8	ug/L	4.38	0.59%
Ti 334.940†	-26.7	-0.062		0,0826	-0.062	ug/L	0.0826	132.33%
Tl 190.801†	0.6	-3.934	_	5.2259	-3.934	-		132.86%
V 290.880†	185.4	-0.013		0.8091	-0.013	-		>999.9%
Zn 206.200†	1765.2	171.7		0.62	171.7	J	0.62	0.36%

5.06 3.58%

Sequence No.: 26

Sample ID: C131107-22 @10X Analyst: S. Van Overmeiren

Initial Sample Wt: Dilution: 10X

Zn 206.200†

Autosampler Location: 41

Date Collected: 12/10/2013 2:15:32 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-22 @10X

Back Pressure Flow Analyte

All 194.0 kPa 0.80 L/min

Mean Data: C13110	 7-22 @10X							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Sc Axial	3836190.8	98.81	%	2.161				2.19%
Sc Radial	404734.3	95.85	ક	1.494				1.56%
Ag 328.068†	-48.4	1.106	ug/L	0.6025	11.06	ug/L	6.025	54.49%
Al 396.153†	212.1	38.19	ug/L	5.863	381.9	ug/L	58.63	15.35%
As 193.696†	-26.5	-60.54	${\tt ug/L}$	12.016	-605.4	ug/L	120.16	19.85%
Ba 233.527†	95.1	1.350	ug/L	0.0806	13.50	ug/L	0.806	5.97%
Be 313.107†	184.2	-0.0048	ug/L	0.02686	-0.0483	ug/L	0.26860	556.64%
в 249.677†	-188.3	-8.316	ug/L	2.2739	-83.16	ug/L	22.739	27.34%
Ca 317.933†	427012.1	51520	ug/L	643.4	515200	ug/L	6433.9	1.25%
Cd 214.440†	-10.8	-0.3722	ug/L	0.09602	-3.722	ug/L	0.9602	25.80%
Co 228.616†	2.9	0.3715	ug/L	0.43348	3.715	ug/L	4.3348	116.68%
Cr 267.716†	-1.3	0.8689		0.23921	8.689	ug/L	2.3921	27.53%
Cu 324.752†	58.3	0.7675	${\tt ug/L}$	0.86055	7.675	ug/L	8.6055	112.12%
Fe 238.204†	38.4	310.2	<u> </u>	27.67	3102	ug/L	276.7	8.92%
к 766.490†	4672.5	2437	${\tt ug/L}$	19.5	24370	ug/L	195.4	0.80%
Mg 285.213†	73048.9	9187	${\tt ug/L}$	125.9	91870	ug/L	1258.6	1.37%
Mn 257.610†	29449.3	64.60		1.570	646.0	${\tt ug/L}$	15.70	2.43%
Mo 202.031†	12.6	7.079		2.3667	70.79	ug/L	23.667	33.43%
Na 589.592†	32692.7	6573	${\tt ug/L}$	84.9	65730	ug/L	848.6	1.29%
Ni 231.604†	30.9	2.975	ug/L	1.6985	29.75	ug/L	16.985	57.09%
Pb 220.353†	-5.5	-4.106	ug/L	8.0665	-41.06	ug/L	80.665	196.46%
Sb 206.836†	3.9	0.6692		5.31389	6.692	ug/L	53.1389	794.11%
Se 196.026†	0.9	0.7239	ug/L	30.49849	7.239	ug/L	304.9849	>999.9%
SiO2 251.603†	95192.2	9369	ug/L	217.1	93690	ug/L	2171.3	2.32%
Sr 421.552†	3430073.8	875.8	ug/L	22.66	8758	ug/L	226.6	2.59%
Ti 334.940†	-14.5	-0.034	ug/L	0.0968	-0.338	ug/L	0.9681	286.45%
Tl 190.801†	6.0	2.855	ug/L	6.1843	28.55	ug/L	61.843	216.59%
V 290.880†	36.1	-2.131	ug/L	0.3817	-21.31	ug/L	3.817	17.91%

161.0 14.12 ug/L 0.506 141.2 ug/L

Dilution: 10X

Sequence No.: 27 Sample ID: C131107-25 @10X Analyst: S.VanOvermeiren Initial Sample Wt:

Autosampler Location: 42 Date Collected: 12/10/2013 2:18:44 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-25 @10X Analyte

All 195.0 kPa

Back Pressure Flow
195.0 kPa 0.80 L/min

Woon Date: 0121107							
Mean Data: C131107	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3822345.8	98.45	ક	1.180			1.20%
Sc Radial	401632.7	95,11	ક	2.091			2.20%
Ag 328.068†	1.4	0.5418	ug/L	0.59975	5.418	ug/L	5.9975 110.70%
Al 396.153†	125.2	22.36	ug/L	14.165	223.6	ug/L	141.65 63.34%
As 193.696†	-5.6	-12.67	ug/L	3.829	-126.7	ug/L	38.29 30.21%
Ba 233.527†	203.6	4.982	ug/L	0.1782	49.82	ug/L	1.782 3.58%
Be 313.107†	61.3	-0.0156	ug/L	0.03406	-0.1559	ug/L	0.34057 218.43%
в 249.677†	-118.3	-5.223	ug/L	1.2938	-52.23	ug/L	12.938 24.77%
Ca 317.933†	184678.3	22280	ug/L	688.5	222800	ug/L	6885.1 3.09%
Cd 214.440†	-7.3	-0.2615	ug/L	0.03748	-2.615	ug/L	0.3748 14.33%
Co 228.616†	9.1	0.6545	ug/L	0.09657	6.545	ug/L	0.9657 14.75%
Cr 267.716†	1.7	0.2008	ug/L	0.26358	2.008	ug/L	2.6358 131.28%
Cu 324.752†	76.4	0.5824	ug/L	0.44885	5.824	ug/L	4.4885 77.07%
Fe 238.204†	20.9	169.3	ug/L	18.37	1693	ug/L	183.7 10.85%
к 766.490†	2940.8	1545	ug/L	35.0	15450	ug/L	350.4 2.27%
Mg 285.213†	36587.5	4601	ug/L	158.3	46010	ug/L	1582.8 3.44%
Mn 257.610†	225515.3	497.8	ug/L	5.11	4978	ug/L	51.1 1.03%
Mo 202.031†	2.6	1.436	ug/L	1.3189	14.36	ug/L	13.189 91.86%
Na 589.592†	16001.6	3218	ug/L	103.8	32180	ug/L	1038.2 3.23%
Ni 231.604†	38.4	3.554	${\tt ug/L}$	1.8177	35.54	ug/L	18.177 51.14%
Pb 220.353†	6.0	2.463	${\tt ug/L}$	5.2130	24.63	ug/L	52.130 211.65%
Sb 206.836†	0.6	-1.263	ug/L	9.5320	-12.63	ug/L	95.320 754.54%
Se 196.026†	-1.6	-5.936	ug/L	16.7612	-59.36	ug/L	167.612 282.39%
SiO2 251.603†	52549.2	5173	ug/L	50.1	51730	ug/L	501.4 0.97%
Sr 421.552†	1443077.1	368.4	ug/L	1.08	3684	ug/L	10.8 0.29%
Ti 334.940†	66.8	0.156	ug/L	0.1122	1.560	ug/L	1.1217 71.90%
Tl 190.801†	9.7	9.450	ug/L	2.3268	94.50	ug/L	23.268 24.62%
V 290.880†	-8.0	-1.290	ug/L	0.7841	-12.90	ug/L	7.841 60.78%
Zn 206.200†	98.3	8.802	ug/L	0.6654	88.02	ug/L	6.654 7.56%

Sequence No.: 28

Sample ID: C131107-28 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Autosampler Location: 43
Date Collected: 12/10/2013 2:21:48 PM
Data Type: Original

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-28 @10X

Analyte Back Pressure Flow

All 194.0 kPa 0.80 L/min

Mean Data: C1311								
Mean Data: CISI	Mean Corrected		Calib		,	Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Sc Axial	3805373.6	98.01	%	1.142				1.16%
Sc Radial	407599.2	96.53	8	1.310				1.36%
Ag 328.068†	-99.1	-0.1360	ug/L	0.43351	-1.360	ug/L	4.3351 31	8.71%
Al 396.153†	81.2	15.13	ug/L	16.383	151.3	ug/L	163.83 10	8.26%
As 193.696†	-7.3	-17.29	ug/L	3.000	-172.9	ug/L	30.00 1	7.35%
Ba 233.527†	54.4	0.9676	ug/L	0.11681	9.676	ug/L	1.1681 1	2.07%
Be 313.107†	-55.9	-0.0928	ug/L	0.05688	-0.9278	ug/L	0.56876 63	1.30%
B 249.677†	-208.2	-9.198	ug/L	1.2454	-91.98	ug/L	12.454 13	3.54%
Ca 317.933†	210710.0	25420	ug/L	463.1	254200	ug/L	4631.1	1.82%
Cd 214.440†	-2.3	-0.0786	ug/L	0.29178	-0.7860	ug/L	2.91777 373	1.24%
Co 228.616†	-5.7	-0.2746	ug/L	0.18302	-2.746	ug/L	1.8302 66	6.64%
Cr 267.716†	1.4	0.4871	ug/L	0.41137	4.871	ug/L	4.1137 84	4.46%
Cu 324.752†	149.3	0.8301	ug/L	0.66302	8.301	ug/L	6.6302 79	9.87%
Fe 238.204†	2.3	16.07	ug/L	8.778	160.7	ug/L	87.78 54	4.62%
K 766.490†	523.4	249.2	ug/L	36.02	2492	ug/L	360.2 14	4.46%
Mg 285.213†	18663.9	2347	ug/L	51.8	23470	ug/L	518.5	2.21%
Mn 257.610†	106.9	0.0918	ug/L	0.03922	0.9176	ug/L	0.39215 42	2.74%
Mo 202.031†	5.7	3.215	ug/L	1.8961	32.15	ug/L	18.961 58	8.97%
Na 589.592†	7213.8	1447	ug/L	41.0	14470	ug/L	410.3	2.84%
Ni 231.604†	42.1	3.850	ug/L	0.6515	38.50	ug/L	6.515 16	5.92%
Pb 220.353†	-0.7	-0.5771	ug/L	0.72378	-5.771	ug/L	7.2378 125	5.42%
Sb 206.836†	6.5	7.156	ug/L	6.5891	71.56	ug/L	65.891 92	2.07%
Se 196.026†	-2.2	-6.497	ug/L	10.5330	-64.97	ug/L	105.330 162	2.11%
SiO2 251.603†	12408.6	1217	ug/L	14.0	12170	ug/L	140.0 1	1.15%
Sr 421.552†	1554852.5	397.0		0.98	3970	ug/L	9.8	0.25%
Ti 334.940†	-1.6	-0.004	ug/L	0.0722	-0.038	ug/L	0.7222 >99	99.9%
Tl 190.801†	8.0	8.676	ug/L	3.4750	86.76	ug/L	34.750 40	0.05%
V 290.880†	81.0	-0.076	ug/L	0.3808	-0.755	ug/L	3.8076 504	1.20%
Zn 206.200†	20.9	1.493	ug/L	0.5050	14.93	ug/L	5.050 33	3.84%

Sequence No.: 29

Sample ID: C131107-30 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Autosampler Location: 44

Date Collected: 12/10/2013 2:24:52 PM

Nebulizer Parameters: C131107-30 @10X

Analyte

Back PressureFlow196.0 kPa0.80 L/min All

Mean Data: C1311								
Mean Data. CISII	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Sc Axial	3810085.6	98.14	ક	1.443				1.47%
Sc Radial	413502.7	97.92	૪	0.125				0.13%
Ag 328.068†	-78.0	0.0184	ug/L	1.12329	0.1840	ug/L	11.23291	>999.9%
Al 396.153†	122.6	23.45	ug/L	1.313	234.5	ug/L	13.13	5.60%
As 193.696†	0.9	1.411	ug/L	4.1401	14.11	ug/L	41.401	293.51%
Ba 233.527†	79.7	1.655	ug/L	0.1652	16.55	ug/L	1.652	9.98%
Be 313.107†	-22.4	-0.0700	ug/L	0.03033	-0.7004	ug/L	0.30328	43.30%
В 249.677†	-202.1	-8.929	ug/L	1.5324	-89.29	ug/L	15.324	17.16%
Ca 317.933†	199654.4	24090	ug/L	152.8	.240900	ug/L	1528.2	0.63%
Cd 214.440†	-5.5	-0.2073	ug/L	0.02920	-2.073	ug/L	0.2920	14.08%
Co 228.616†	2.4	0.2222	ug/L	0.94583	2.222	ug/L	9.4583	425.62%
Cr 267.716†	2.2	0.4418	ug/L	0.37267	4.418	ug/L	3.7267	84.35%
Cu 324.752†	75.4	0.5210	ug/L	0.52674	5.210	ug/L	5.2674	101.10%
Fe 238.204†	15.7	127.4	ug/L	7.15		ug/L	71.5	5.61%
к 766.490†	1157.3	584.9	ug/L	13.77	5849	ug/L	137.7	2.35%
Mg 285.213†	17789.9	2237	ug/L	10.6	22370	ug/L	105.8	0.47%
Mn 257.610†	56645.1	125.0	ug/L	0.92	1250	ug/L	9.2	0.74%
Mo 202.031†	6.2	3.573	ug/L	0.2957	35.73	ug/L	2.957	8.28%
Na 589.592†	6805.2	1364		11.0	13640	ug/L	110.0	0.81%
Ni 231.604†	42.9	3.926		0.2641	39.26	ug/L	2.641	6.73%
Pb 220.353†	-2.4	-1.561	ug/L	6.2755	-15.61	ug/L	62.755	401.90%
Sb 206.836†	3.8	3.554	ug/L	5.8892	35.54	ug/Ĺ	58.892	165.72%
Se 196.026†	-4.3	-12.46	ug/L	9.33.7	-124.6	ug/L	93.37	74.92%
SiO2 251.603†	13421.3	1316	ug/L	12.0	13160	ug/L	120.0	0.91%
Sr 421.552†	1590422.1	406.1	ug/L	2.06	4061	ug/L	20.6	0.51%
Ti 334.940†	14.9	0.035	ug/L	0.0263	0.348	ug/L	0.2626	75.48%
Tl 190.801†	2.0	0.786	ug/L	10.7431	7.860	ug/L	107.4310	>999.9%
V 290.880†	97.4	0.116	ug/L	0.9545	1.163	ug/L	9.5453	820.58%
Zn 206.200†	44.1	3.703	ug/L	0.4485	37.03	ug/L	4.485	12.11%

Date: 12/10/2013 2:30:19 PM

Sequence No.: 30 Sample ID: Blank

Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 45 Date Collected: 12/10/2013 2:27:56 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: Blank

Analyte

All

Back Pressure Flow

194.0 kPa 0.80 L/min

Mean Data: Blank							
	Mean Corrected	*	Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3844408.6	99.02	8	1.049			1.06%
Sc Radial	405311.9	95.98	%	1.637			1.71%
Ag 328.068†	-61.8	-0.4912	ug/L	0.47733	-0.4912	ug/L	0.47733 97.18%
Al 396.153†	50.5	9.588	ug/L	4.7305	9.588	ug/L	4.7305 49.34%
As 193.696†	2.1	4.675	ug/L	3.6588	4.675	ug/L	3.6588 78.27%
Ba 233.527†	2.3	0.0620	ug/L	0.09805	0.0620	ug/L	0.09805 158.13%
Be 313.107†	-141.1	-0.0926	ug/L	0.06386	-0.0926	ug/L	0.06386 68.97%
в 249.677†	-53.5	-2.364	ug/L	1.3454	-2.364	ug/L	1.3454 56.91%
Ca 317.933†	109.9	13.26	ug/L	0.840	13.26	ug/L	0.840 6.33%
Cd 214.440†	-1.3	-0.0520	ug/L	0.12462	-0.0520	ug/L	0.12462 239.62%
Co 228.616†	-3.4	-0.2106	ug/L	0.18058	-0.2106	ug/L	0.18058 85.74%
Cr 267.716†	1.8	0.0832	ug/L	0.22460	0.0832	ug/L	0.22460 270.00%
Cu 324.752†	-11.6	-0.0499	ug/L	0.50999	-0.0499	J .	0.50999 >999.9%
Fe 238.204†	2.4	19.92	ug/L	30.692	19.92	ug/L	30.692 154.04%
к 766.490†	118.0	62.65	ug/L	20.094	62.65	ug/L	20.094 32.07%
Mg 285.213†	4.0	0.5122	ug/L	0.39273	0.5122	ug/L	0.39273 76.67%
Mn 257.610†	20.1	0.0450	ug/L	0.02777	0.0450	ug/L	0.02777 61.68%
Mo 202.031†	-2.1	-1.234	ug/L	1.2183	-1.234	ug/L	1.2183 98.69%
Na 589.592†	65.9	13.33	ug/L	7.949	13.33	ug/L	7.949 59.62%
Ni 231.604†	7.2	0.6502	ug/L	1.60876	0.6502	ug/L	1.60876 247.43%
Pb 220.353†	1.9	1.024	ug/L	4.8463	1.024	ug/L	4.8463 473.44%
Sb 206.836†	2.2	3.025	ùg/L	3.2993	3.025	ug/L	3.2993 109.08%
Se 196.026†	-6.7	-18.88	ug/L	11.085	-18.88	ug/L	11.085 58.70%
SiO2 251.603†	815.4	80.38	ug/L	1.099	80.38	ug/L	1.099 1.37%
Sr 421.552†	1677.7	0.427	ug/L	0.1661	0.427	ug/L	0.1661 38.88%
Ti 334.940†	-0.1	0.000	ug/L	0.0277	0.000	ug/L	0.0277 >999.9%
Tl 190.801†	2.5	3.136	ug/L	9.3666	3.136	ug/L	9.3666 298.66%
V 290.880†	40.3	0.518	ug/L	0.4856	0.518	ug/L	0.4856 93.70%
Zn 206.200†	-5.0	-0.494	ug/L	0.4132	-0.494	ug/L	0.4132 83.62%

Sequence No.: 31 Sample ID: SEQ-CCV Analyst: Initial Sample Wt: Dilution: Autosampler Location: 3
Date Collected: 12/10/2013 2:30:59 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-CCV

AnalyteBack Pressure

Flow

195.0 kPa

0.80 L/min

Mean Data: SEQ-CCV	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc	IInite	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Sc Axial Sc Radial	3819024.2	98.37	8	0.856				0.87%
Sc Radial	402529.9	95.32	8	1.102				1.22%
Ag 328.068†	31460.3	253.7	ug/L		253.7	ug/L	3.48	1.37%
QC value within	limits for Ag 32			101.46%				
Al 396.153†	65549.7			241.6	12420	ug/L	241.6	1.95%
	limits for Al 39							
		2569		27.0	2569	ug/L	27.0	1.05%
	limits for As 193				E02 0	/=	F 41	1 070
•	18594.3		J .	5.41	503.2	ug/L	5.41	1.07%
	limits for Ba 233 773707.4	506.7		0.63	E06 7	ug/L	0.63	0.12%
Be 313.107†	limits for Be 313				306.7	ug/L	0.03	0.126
	115398.2			71.4	5097	ug/L	71.4	1.40%
	limits for B 249				3057	ug/ ii	/1.4	1.400
Ca 317.933†					12080	ug/L	210.4	1.74%
	limits for Ca 31				12000	ug/ 1	21011	
		512.0		5.82	512.0	ug/L	5.82	1.14%
•	limits for Cd 214		•			3.		
	8193.7				511.0	ug/L	6.81	1.33%
	limits for Co 228					_		
Cr 267.716†	56439.9	2568	ug/L	30.7	2568	ug/L	30.7	1.20%
QC value within	limits for Cr 26	7.716 I						
		999.6		11.35	999.6	ug/L	11.35	1.14%
	limits for Cu 324							
	1423.7		J.		11850	ug/L	190.2	1.60%
	limits for Fe 238	3.204 I	Recovery =		0.454.0	/-	45.6	1 0 10
766.490†		24510		476.1	24510	ug/L	476.1	1.94%
	limits for K 766.				10520	/T	218.0	1.74%
	99690.5 limits for Mg 285				12550	ug/L	210.0	1.740
Mn 257.610†		1012		2.5	1012	ug/L	2.5	0.25%
	limits for Mn 257				1012	ug/L	2.5	0.250
		497.6		3.89	497 6	ug/L	3.89	0.78%
	limits for Mo 202				137.0	ug/ 1	3.03	
Na 589.592†				225.6	12280	ug/L	225.6	1.84%
	limits for Na 589		Recovery =	98.24%				
Ni 231.604†		2556		25.8	2556	ug/L	25.8	1.01%
	limits for Ni 231	L.604 H	Recovery =	102.25%				
Pb 220.353†	4808.5	2516	ug/L	16.8	2516	ug/L	16.8	0.67%
QC value within	limits for Pb 220).353 I	Recovery =	100.65%				
Sb 206.836†	1869.8	2505	ug/L	32.3	2505	ug/L	32.3	1.29%
	limits for Sb 206			100.19%		•		
		2590		43.4	2590	ug/L	43.4	1.68%
	limits for Se 196		_					
SiO2 251.603†	103464.1	10180		121.8	10180	ug/L	121.8	1.20%
	limits for SiO2 2					-	4 50	0 250
Sr 421.552†	1975498.8	503.4		1.78	503.4	ug/L	1.78	0.35%
_	limits for Sr 421				506 7	/T	г 10	1 010
ri 334.940†	217080.8	506.7		5.10	506.7	ug/L	5.10	1.01%
	limits for Ti 334				0 = 2 7	110 /T	6.7	0.26%
rl 190.801†	1993.0 limits for Tl 190	2537		6.7	453 <i>1</i>	ug/L	0./	0.406
7 290.880†	78023.1	1020		101.476	1020	ug/L	11.1	1.09%
	1imits for V 290.				1020	~9/ H		1.000
Ac sarde Atculli	1111100 101 V 290.	JOU RE		LU1.710				

Method: ESAT_2013_1.0

Page 46

Date: 12/10/2013 2:33:26 PM

Zn 206.200† 26211.0 2562 ug/L 30.7 QC value within limits for Zn 206.200 Recovery = 102.47% All analyte(s) passed QC.

2562 ug/L

30.7

1.20%

Sequence No.: 32 Sample ID: SEQ-CCB Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 1
Date Collected: 12/10/2013 2:34:06 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-CCB

AnalyteBack Pressure

Flow

194.0 kPa

0.80 L/min

Mean Data: SEQ-CCB								
	Mean Corrected	1	Calib			Sample		
Analyte Sc Axial Sc Radial Ag 328.068†	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Sc Axial	3791209.3	97.65	ક	0.244				0.25%
Sc Radial	400909.0	94.94	%	0.232				0.24%
Ag 328.068†	-18.7	-0.1460	ug/L	0.57560	-0.1460	${\tt ug/L}$	0.57560	394.33%
QC value within	limits for Ag	328.068	Recovery	= Not calculate	ed			
Al 396.153†						ug/L	16.2257	612.22%
QC value within			Recovery	= Not calculate	ed cool	/-	16 0200	0.5.6.5.00
	2.9			16.9380		ug/L	16.9380	256.52%
QC value within					ed 1700	/T	0 11300	60.000
	6.8					ug/L	0.11309	62.90%
QC value within				= Not calculate	ea 0700	/T	0.03373	17 (10
	108.9					ug/L	0.03373	47.046
QC value within				1.2167		/T	1 2167	10 010
B 249.677† QC value within	213.4	9.427	ug/ь	1.210/	9.427	ug/L	1.210/	12.916
				1.8374	. 2161	/T	1 027/	01 028
Ca 317.933† QC value within		2.164		1.03/4	2.104	ug/L	1.8374	04.546
QC varue within	TIMILES TOL Ca	0 1070	kecovery	0.07861	:u _ 0 1270	110 /T	0 07061	61 179
Cd 214.440† QC value within	3.3	0.14/9	ug/L	U.U/001	U.14/9	ug/L	0.07661	01.4/6
QC value within	o 1	714.44U 1	kecovery	0.17401	n nnes	110 /T	0 17401	<000 0°
Co 228.616† QC value within						ug/L	0.1/401	7333,36
QC value within	11IIIILS TOP CO	0 1240	recovery	0.06752	.u n 1240	110 /T	0 06752	E0 06%
Cr 267.716† QC value within						ug/L	0.00752	50.00%
QC Value within	100 2	20/./10 I	recovery	0.13871	.a. . n. 1510	1107 /T	0 13071	30 108
						ug/ш	0,136/1	30.49%
QC value within	0.8	6 275	Recovery	= NOL Calculate	.u 6 275	1107 /T	24.9326	307 359
Fe 238.204† QC value within				24.9320	٥.4/٥	ug/L	24.9320	391.336
						110 /T	28.178	33 308
K 766.490† QC value within	160.7					ug/L	20.170	33.30%
	5.0			1 ATADO	0 6160	110 /T	1.47428	230 019
Mg 285.213† QC value within						ug/L	1,4/420	239.016
Mn 257.610†				0.01202	U : U 432	1107 /T	0.01202	27 8/18
QC value within						ug/L	0.01202	27.040
Mo 202 031+	LIMILUS LOL MIII	2 7/0	recovery	1.6076	2 7/0	110 /T	1 6076	12 808
Mo 202.031† QC value within	0.5	3./40	ug/L	1.00/0	٥./40 م	ug/L	1.0076	42.030
				13.9060	u .7217	110 /T	13.9060	100 059
Na 589.592† QC value within	limita for No	/.JI/	ug/L	- Not goldwlate	7.JI/	ug/L	13.9000	190.03%
Ni 231.604†	24.9	2 257	recovery	0.6697	2 257	110 /T.	0.6697	29 678
QC value within						ug/II	0.0057	25.070
				3.5802		ug/L	3.5802	101 61%
QC value within	limita for Dh	2.524 220 353 T	ug/L	- Not galgulate		ug/II	5.5002	101.010
Sb 206.836†		21.54		5.731	21 54	ug /T	5.731	26 60%
QC value within						ug/ L	3,731	20.000
Se 196.026†	_5 6	_15 50	vecovery	19.272	_15 58	ua /T.	19 272	123 67%
QC value within						ug/ H	13.272	123.070
SiO2 251.603†	-59.4	-5.892		1.1583	-5.892	ua/L	1 1583	19.66%
QC value within			.			ug/ ii	1.1303	13.000
Sr 421.552†	1381.9	0.352		0.0888	0.352	ua/T.	0 0888	25.22%
QC value within						ug/L	0.0000	25,220
Ti 334.940†	168.1	0.392		0.0353	0.392	ua/I.	0.0353	9.00%
QC value within						ч у / п	0.0000	J.000
_	9.3	11.81		6.342	11.81	110 /T.	6.342	53.69%
Tl 190.801† QC value within			•			49/11	0.544	55.056
V 290.880†	81.7	1.084		0.6058	1.084	ug/L	0 605º	55.89%
QC value within						ч у / п	0.0056	22.026
ye varue within	TIMITUS TOT A 7	20.000 RE	scovery =	· Not carcurated				

Method: ESAT_2013_1.0

Page 48

Date: 12/10/2013 2:36:28 PM

5.7 0.541 ug/L 0.4088 0.541 ug/L Zn 206.200† QC value within limits for Zn 206.200 Recovery = Not calculated All analyte(s) passed QC.

0.4088 75.51%

Analysis Begun

Start Time: 12/10/2013 2:41:01 PM Plasma On Time: 12/10/2013 11:59:25 AM

Logged In Analyst: esat Technique: ICP Continuous

Spectrometer Model: Optima 4300 DV, S/N 077N3082602Autosampler Model: AS-93plus

Sample Information File: C:\pe\Administrator\Sample Information\2013\A-025 Rico Argentine\A-025_1312035_T

Batch ID: 1312035

Results Data Set: A025_1312039_131210B

Results Library: C:\pe\Administrator\Results\Results.mdb

Sequence No.: 1

Sample ID: SEQ-ICV

Analyst:

Initial Sample Wt:

Dilution:

User canceled analysis.

Autosampler Location: 3

Date Collected: 12/10/2013 2:41:01 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Analysis Begun

Start Time: 12/10/2013 2:41:20 PM Plasma On Time: 12/10/2013 11:59:25 AM

Logged In Analyst: esat Technique: ICP Continuous

Spectrometer Model: Optima 4300 DV, S/N 077N3082602Autosampler Model: AS-93plus

Sample Information File: C:\pe\Administrator\Sample Information\2013\A-025 Rico Argentine\A-025_1312035_T

Batch ID: 1312035

Results Data Set: A025_1312039_131210B

Results Library: C:\pe\Administrator\Results\Results.mdb

Sequence No.: 7

Sample ID: 1312035-BLK1

Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Pb 220.353†

Sb 206.836†

Autosampler Location: 26

Date Collected: 12/10/2013 2:41:20 PM

3.269 ug/L

6.919 ug/L

4.4154 135.08%

3.1782 45.94%

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1312035-BLK1

Analyte Back Pressure Flow

All 194.0 kPa 0.80 L/min

6.2

5.1

Mean Data: 1312035	-BLK1						
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3868443.3	99.64	ક્ર	0.606			0.61%
Sc Radial	417398.0	98.85	ક	0.379			0.38%
Ag 328.068†	-12.4	-0.0997	ug/L	0.21631	-0.0997	ug/L	0.21631 217.05%
Al 396.153†	59.9	11.44	${\tt ug/L}$	4.862	11.44	ug/L	4.862 42.52%
As 193.696†	2.1	4.828	ug/L	8.1194	4.828	ug/L	8.1194 168.17%
Ba 233.527†	2.6	0.0704	ug/L	0.20716	0.0704	ug/L	0.20716 294.44%
Be 313.107†	51.4	0.0335	ug/L	0.04154	0.0335	ug/L	0.04154 123.99%
в 249.677†	36.4	1.609	ug/L	0.6488	1.609	ug/L	0.6488 40.32%
Ca 317.933†	26.8	3.238	ug/L	0.9971	3.238	ug/L	0.9971 30.79%
Cd 214.440†	-3.8	-0.1494	ug/L	0.06120	-0.1494	ug/L	0.06120 40.95%
Co 228.616†	5.9	0.3627	ug/L	0.25885	0.3627	ug/L	0.25885 71.36%
Cr 267.716†	9.7	0.4436	ug/L	0.20330	0.4436	ug/L	0.20330 45.83%
Cu 324.752†	-31.0	-0.1373	ug/L	0.12702	-0.1373	ug/L	0.12702 92.53%
Fe 238.204†	3.4	28.17	ug/L	4.163	28.17	ug/L	4.163 14.78%
К 766.490†	55.8	29.24	ug/L	39.546	29.24	ug/L	39.546 135.26%
Mg 285.213†	-19.0	-2.383	${\tt ug/L}$	0.9231	-2.383	ug/L	0.9231 38.74%
Mn 257.610†	80.4	0.1786		0.05820	0.1786	ug/L	0.05820 32.58%
Mo 202.031†	-3.0	-1.728	ug/L	4.8835	-1.728	-	4.8835 282.66%
Na 589.592†	63.7	12.85	ug/L	8.510	12.85	ug/L	8.510 66.20%
Ni 231.604†	19.7	1.774	ug/L	2.0477	1.774	ug/L	2.0477 115.44%

4.4154 3.1782

3.269 ug/L

6.919 ug/L

Method: ESAT_2013_1.0)	Page	2	Date:	12/10/2013 2:43:43 PM
Se 196.026†	-7.5	-21.12 ug/L	24.208	-21.12 ug/L	24.208 114.60%
SiO2 251.603†	-58.1	-5.725 ug/L	0.5774	-5.725 ug/L	0.5774 10.09%
Sr 421.552†	159.0	0.039 ug/L	0.1181	0.039 ug/L	0.1181 304.09%
Ti 334.940†	45.3	0.106 ug/L	0.0642	0.106 ug/L	0.0642 60.70%
Tl 190.801†	3.0	3.769 ug/L	4.0517	3.769 ug/L	4.0517 107.51%
V 290.880†	1.3	0.005 ug/L	0.5532	0.005 ug/L	0.5532 >999.9%
7n 206 200+	93	0 913 ng/T.	0 4498	0 913 ug/L	0 4498 49 26%

Sequence No.: 8

Sample ID: 1312035-SRM1 Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 27

Date Collected: 12/10/2013 2:44:23 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1312035-SRM1

Analyte Flow Back Pressure All

194.0 kPa 0.80 L/min

Mean Data: 1312035	Mean Data: 1312035-SRM1										
	Mean Corrected		Calib			Sample					
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD			
Sc Axial	3825225.0	98.53	용	1.173				1.19%			
Sc Radial	419346.4	99.31	%	1.698		•		1.71%			
Ag 328.068†	31045.7	249.9		1.82	249.9	ug/L	1.82	0.73%			
Al 396.153†	5100.4	945.0		22.03	945.0	ug/L	22.03	2.33%			
As 193.696†	906.2	2060	ug/L	25.8	2060	ug/L	25.8	1.25%			
Ba 233.527†	37320.8	1014	ug/L	9.5	1014	${\tt ug/L}$	9.5	0.94%			
Be 313.107†	1518750.0	994.9	ug/L	1.70	994.9	${\tt ug/L}$	1.70	0.17%			
в 249.677†	22995.0	1016	ug/L	10.0	1016	ug/L	10.0	0.98%			
Ca 317.933†	7977.4	909.5	ug/L	16.22	909.5	ug/L	16.22	1.78%			
Cd 214.440†	25961.5	1013	ug/L	6.4	1013	ug/L	6.4	0.63%			
Co 228.616†	16462.9	1027	ug/L	5.4	1027	ug/L	5.4	0.53%			
Cr 267.716†	22341.5	1017	ug/L	5.7	1017	ug/L	5.7	0.56%			
Cu 324.752†	212736.7	964.4	ug/L	1.50	964.4	ug/L	1.50	0.16%			
Fe 238.204†	103.3	847.8	ug/L	54.41	847.8	ug/L	54.41	6.42%			
K 766.490†	9346.0	4716	ug/L	108.5	4716	ug/L	108.5	2.30%			
Mg 285.213†	7906.8	985.4	ug/L	21.03	985.4	ug/L	21.03	2.13%			
Mn 257.610†	455482.4	1005	ug/L	0.2	1005	ug/L	0.2	0.02%			
Mo 202.031†	1716.8	990.9	ug/L	11.07	990.9	ug/L	11.07	1.12%			
Na 589.592†	4995.4	925.0	ug/L	30.27	925.0	ug/L	30.27	3.27%			
Ni 231.604†	11362.1	1030	ug/L	6.8	1030	ug/L	6.8	0.66%			
Pb 220.353†	3842.0	2008	ug/L	12.9	2008	ug/L	12.9	0.64%			
Sb 206.836†	1469.8	1989	ug/L	15.7	1989	ug/L	15.7	0.79%			
Se 196.026†	342.5	962.3	ug/L	42.00	962.3	ug/L	42.00	4.36%			
SiO2 251.603†	52518.8	5122	ug/L	38.4	5122	ug/L	38.4	0.75%			
Sr 421.552†	3947611.9	1008	ug/L	10.3	1008	ug/L	10.3	1.02%			
Ti 334.940†	430203.4	1004	ug/L	1.4	1004	ug/L	1.4	0.14%			
Tl 190.801†	4000.9	5091	ug/L	25.8	5091	ug/L	25.8	0.51%			
V 290.880†	75868.9	994.4	ug/L	6.54	994.4	ug/L	6.54	0.66%			
Zn 206.200†	10592.4	1030		5.8	1030	ug/L	5.8	0.57%			

Matrix Recovery Check: 1312035-SRM1

Analyte	Expected Conc.	Measured Conc.	Std. Dev.	Units	Recovery (%)
Al 396.153	1011	945.0	22.035	ug/L	93.4
Ca 317.933	1003	909.5	16.220	ug/L	90.6
Fe 238.204	1028	847.8	54.407	ug/L	82.0
к 766.490	5029	4716	108.472	ug/L	93.7
Mg 285.213	997.6	985.4	21.025	ug/L	98.8
Na 589.592	1013	925.0	30.272	ug/L	91.2
Ag 328.068	249.9	249.9	1.823	ug/L	100.0
As 193.696	2005	2060	25.804	ug/L	102.7
Ba 233.527	1000	1014	9.545	ug/L	101.4
Be 313.107	1000	994.9	1.702	ug/L	99.5
В 249.677	1002	1016	10.004	ug/L	101.4
Cd 214.440	999.9	1013	6.412	ug/L	101.4
Co 228.616	1000	1027	5.403	ug/L	102.6
Cr 267.716	1000	1017	5.676	ug/L	101.7
Cu 324.752	999.9	964.4	1.500	ug/L	96.5
Mn 257.610	1000	1005	0.175	ug/L	100.5
Mo 202.031	998.3	990.9	11.074	ug/L	99.3
Ni 231.604	1002	1030	6.820	ug/L	102.8
Pb 220.353	2003	2008	12.915	ug/L	100.2
Sb 206.836	2007	1989	15.738	ug/L	99.1

Method: ESAT_2013_1.0		Page	4		Date: 12/10/20	13 2:46:57 PM
Se 196.026	978.9	962.3	42.003	ug/L	98.3	
SiO2 251.603	4994	5122	38,442	ug/L	102.6	
Sr 421.552	1000	1008	10.262	ug/L	100.8	
Ti 334.940	1000	1004	1.360	ug/L	100.4	
Tl 190.801	5004	5091	25.759	ug/L	101.7	
V 290.880	1000	994.4	6.541	ug/L	99.4	
7n 206 200	1001	1030	5 843	ug/L	102 9	

#19. 1910.

Sequence No.: 9

Sample ID: C131107-02 @10X Analyst: S.VanOvermeiren Initial Sample Wt:

Dilution: 10X

Zn 206.200†

Autosampler Location: 28 Date Collected: 12/10/2013 2:47:36 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-02 @10X

Analyte

Back Pressure Flow All 195.0 kPa 0.80 L/min

Mean Data: C131107-02 @10X Calib Mean Corrected Sample Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 3808335.7 98.09 % 2.629 2.70%
411811.1 97.52 % 2.629 2.70%
-63.6 0.2436 ug/L 0.30340 2.436 ug/L 3.0340 124.56%
11685.5 2209 ug/L 58.8 22090 ug/L 587.6 2.66%
1.5 6.566 ug/L 10.5637 65.66 ug/L 105.637 160.89%
1160.6 30.95 ug/L 0.461 309.5 ug/L 4.61 1.49%
249.4 0.0963 ug/L 0.05878 0.9627 ug/L 0.58777 61.05%
-102.6 -4.532 ug/L 1.6894 -45.32 ug/L 16.894 37.28%
227518.4 27450 ug/L 736.9 274500 ug/L 7369.3 2.68%
0.9 0.0286 ug/L 0.00959 0.2856 ug/L 0.09586 33.57%
25.3 1.593 ug/L 0.1075 15.93 ug/L 1.075 6.75%
76.1 3.672 ug/L 0.2858 36.72 ug/L 2.858 7.78% 3808335.7 98.09 % 97.52 % 1.54% 1.515 2.629 Sc Axial Sc Radial Ag 328.068† Al 396.153† As 193.696† Ba 233.527† Be 313.107† B 249.677† Ca 317.933† Cd 214.440† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.204† 6.702 ug/L 3268 ug/L 1078 ug/L 3548 ug/L 392.4 2036.7 K 766.490†

 K 766.490†
 2036.7
 1078 ug/L

 Mg 285.213†
 28211.0
 3548 ug/L

 Mm 257.610†
 151789.9
 335.0 ug/L

 Mo 202.031†
 12.8
 6.966 ug/L

 Na 589.592†
 7406.0
 1484 ug/L

 Ni 231.604†
 58.2
 4.930 ug/L

 Pb 220.353†
 30.7
 16.24 ug/L

 Sb 206.836†
 3.9
 2.494 ug/L

 Se 196.026†
 -3.9
 -12.34 ug/L

 SiO2 251.603†
 88494.1
 8717 ug/L

 Sr 421.552†
 1388108.0
 354.2 ug/L

 Ti 334.940†
 9660.8
 22.55 ug/L

 Sr 421.552† 9660.8 9660.8 22.55 ug/L 10.1 9.548 ug/L 368.3 3.253 ug/L 368.0 35.15 ug/L Ti 334.940† Tl 190.801† V 290.880†

Sequence No.: 10

Sample ID: 1312035-DUP1 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Autosampler Location: 29
Date Collected: 12/10/2013 2:50:40 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1312035-DUP1 @10X

AnalyteBack Pressure

Flow

194.0 kPa

0.80 L/min

Mean Data: 1312035								
	Mean Corrected		Calib			\mathtt{Sample}		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
Sc Axial	3828856.2	98.62		0.368				0.37%
Sc Radial	411471.7	97.44		1.684				1.73%
Ag 328.068†	-142.9	-0.3927		0.67512	-3.927	٠.		171.93%
Al 396.153†	11602.5	2194	ug/L	36.8	21940	ug/L	3.68.1	1.68%
As 193.696†	1.0	5.568	J .	7.8030	55.68	.		140.14%
Ba 233.527†	1145.3	30.54		0.294	305.4	ug/L	2.94	0.96%
Be 313.107†	114.1	0.0084	ug/L	0.01452	0.0839	ug/L	0.14520	173.13%
в 249.677†	-153.1	-6.764	ug/L	0.2879	-67.64	ug/L	2.879	4.26%
Ca 317.933†	224842.0	27130	ug/L	488.6	271300	ug/L	4886.2	1.80%
Cd 214.440†	-3.7	-0.1508	ug/L	0.10603	-1.508	ug/L	1.0603	70.33%
Co 228.616†	25.2	1.582	ug/L	0.3664	15.82	ug/L	3.664	23.16%
Cr 267.716†	71.7	3.466	ug/L	0.2339	34.66	ug/L	2.339	6.75%
Cu 324.752†	1164.1	6.038	ug/L	0.0291	60.38	ug/L	0.291	0.48%
Fe 238.204†	387.9	3230	ug/L	55.8	32300	ug/L	558.3	1.73%
к 766.490†	1920.4	1017	ug/L	47.3	10170	ug/L	473.4	4.66%
Mg 285.213†	28040.2	3526	ug/L	69.4	35260	ug/L	693.6	1.97%
Mn 257.610†	150285.4	331.7	ug/L	2.12	3317	ug/L	21.2	0.64%
Mo 202.031†	8.5	4.483	ug/L	1.5161	44.83	ug/L	15.161	33.81%
Na 589.592†	7377.1	1479	ug/L	37.9	14790	ug/L	379.0	2.56%
Ni 231.604†	66.9	5.719	ug/L	1.2863	57.19	ug/L	12.863	22.49%
Pb 220.353†	36.7	19.35	ug/L	5.380	193.5	ug/L	53.80	27.80%
Sb 206.836†	2.2	0.1951	ug/L	7.03436	1.951	ug/L	70.3436	>999.9%
Se 196.026†	-3.2	-10.40	ug/L	13.102	-104.0	ug/L	131.02	126.03%
SiO2 251.603†	88424.2	8710	ug/L	62.4	87100	ug/L	624.1	0.72%
Sr 421.552†	1377608.0	351.5	ug/L	0.27	3515	ug/L	2.7	0.08%
Ti 334.940†	9507.0	22.19	ug/L	1.246	221.9	ug/L	12.46	5.61%
Tl 190.801†	7.6	6.414	ug/L	3.7739	64.14	ug/L	37.739	58.84%
V 290.880†	380.9	3.419	ug/L	0.8967	34.19	ug/L	8.967	26.23%
Zn 206.200†	350.9	33.49	ug/L	0.484	334.9	ug/L	4.84	1.45%

Duplicate Check: 1312035-DUP1 @10X

Analyte	Expected Conc.	Measured Conc.	Std. Dev.	Units	Difference (%)
Sc Radial	97.52	97.44	1.684	8	0.1
Al 396.153	2209	2194	36.815	ug/L	0.7
Ca 317.933	27450	27130	488.620	ug/L	1.2
Fe 238.204	3268	3230	55.826	ug/L	1.2
K 766.490	1078	1017	47.344	ug/L	5.9
Mg 285.213	3548	3526	69.362	ug/L	0.6
Na 589.592	1484	1479	37.896	ug/L	0.4
Sc Axial .	98.09	98.62	0.368	8	0.5
Ag 328.068	0.2436	-0.3927	0.675	ug/L	-853.5
As 193.696	6.566	5.568	7.803	ug/L	16.4
Ba 233.527	30.95	30.54	0.294	ug/L	1.3
Be 313.107	0.0963	0.0084	0.015	ug/L	167.9
В 249.677	-4.532	-6.764	0.288	ug/L	-39.5
Cd 214.440	0.0286	-0.1508	0.106	ug/L	-293.5
Co 228.616	1.593	1.582	0.366	ug/L	0.7
Cr 267.716	3.672	3.466	0.234	ug/L	5.8
Cu 324.752	6.702	6.038	0.029	ug/L	10.4
Mn 257.610	335.0	331.7	2.117	ug/L	1.0
Mo 202.031	6.966	4.483	1.516	ug/L	43.4
Ni 231.604	4.930	5.719	1.286	ug/L	14.8

Method: ESAT_2013_1.0		Page	7		Date: 12/10/20	13 2:53:04 PM
Pb 220.353	16.24	19.35	5.380	ug/L	17.5	
Sb 206.836	2.494	0.1951	7.034	ug/L	171.0	
Se 196.026	-12.34	-10.40	13.102	ug/L	-17.1	
SiO2 251.603	8717	8710	62.409	ug/L	0.1	
Sr 421.552	354.2	351.5	0.270	ug/L	0.8	
Ti 334.940	22.55	22.19	1.246	ug/L	1.6	
Tl 190.801	9.548	6.414	3.774	ug/L	39.3	
V 290.880	3.253	3.419	0.897	ug/L	5.0	
Zn 206.200	35.15	33.49	0.484	ug/L	4.9	
						•
					•	()

Sequence No.: 11

Sample ID: SEQ-SRD1 @50X Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution: 5X

Autosampler Location: 30

Date Collected: 12/10/2013 2:53:44 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: SEQ-SRD1 @50X

Back Pressure Flow Analyte

All · 194.0 kPa 0.80 L/min

Mean Data: SEQ-SRD1 @50X Mean Corrected Calib Sample Intensity Conc. Units Conc. Units Analyte Std.Dev. Std.Dev. RSD 0.21%

 3832371.8
 98.71 %
 0.210
 0.218

 404275.3
 95.74 %
 1.033
 1.08%

 -11.4
 0.0549 ug/L
 0.85227
 0.2744 ug/L
 4.26135 >>999.9%

 2312.7
 437.3 ug/L
 23.19
 2186 ug/L
 116.0 5.30%

 0.4
 1.639 ug/L
 3.2160
 8.194 ug/L
 16.0798 196.25%

 236.6
 6.313 ug/L
 0.0915
 31.57 ug/L
 0.457 1.45%

 56.7
 0.0240 ug/L
 0.02066
 0.1198 ug/L
 0.10330 86.20%

 -46.6
 -2.057 ug/L
 0.4411 -10.28 ug/L
 2.206 21.45%

 44246.1
 5338 ug/L
 53.9 26690 ug/L
 269.6 1.01%

 -4.1
 -0.1623 ug/L
 0.04254 -0.8117 ug/L
 0.21269 26.20%

 3.0
 0.1922 ug/L
 0.34418 0.9611 ug/L
 1.72092 179.07%

 19.1
 0.9085 ug/L
 0.08730 4.543 ug/L
 0.4365 9.61%

 177.0
 0.9516 ug/L
 0.43342 4.758 ug/L
 2.1671 45.55%

 76.1
 633.6 ug/L
 23.07 3168 ug/L
 115.3 3.64%

 422.5
 223.4 ug/L
 24.92 1117 ug/L
 124.6 11.15%

 5530.3
 695.5 ug/L
 9.95 34 0.210 98.71 % 95.74 % Sc Axial 3832371.8 Sc Radial Ag 328.068† Al 396.153† As 193.696† Ba 233.527† Be 313.107† B 249.677† Ca 317.933† Cd 214.440+ Co 228.616† Cr 267.716† Cu 324.752† 25.07 3168 ug/L 115.3 3.64% 422.5 223.4 ug/L 24.92 1117 ug/L 124.6 11.15% 5530.3 695.5 ug/L 9.95 3477 ug/L 49.8 1.43% 30380.2 67.06 ug/L 0.511 335.3 ug/L 2.55 0.76% 2.5 1.332 ug/L 1.2739 6.659 ug/L 6.3697 95.66% 1463.4 293.3 ug/L 8.25 1467 ug/L 41.2 2.81% 20.1 1.753 ug/L 1.5083 8.765 ug/L 7.5414 86.04% 14.7 7.754 ug/L 4.9930 38.77 ug/L 24.965 64.39% 5.5 6.895 ug/L 8.8642 34.47 ug/L 24.965 64.39% 5.5 6.895 ug/L 8.8642 34.47 ug/L 27.536 33.18% 17420.5 1716 ug/L 10.2 8580 ug/L 27.536 33.18% 17420.5 1716 ug/L 0.245 350.9 ug/L 1.23 0.35% 1945.0 4.540 ug/L 0.4982 22.70 ug/L 2.491 10.97% 4.1 4.550 ug/L 9.4826 22.75 ug/L 47.413 208.42% 81.3 0.757 ug/L 0.3503 3.785 ug/L 1.7517 46.28% 66.7 6.354 ug/L 0.2199 31.77 ug/L 1.099 3.46% Fe 238.204† K 766.490† Mg 285.213† 30380.2 Mn 257.610† Mo 202.031† Na 589.592† Ni 231.604† Pb 220.353† 5.5 6.895 ug/L -5.8 -16.60 ug/L 17420.5 1716 ug/L 275093.8 70.19 ug/L Sb 206.836† Se 196.026† SiO2 251.603† Sr 421.552† 1945.0 Ti 334.940† Tl 190.801† V 290.880† Zn 206.200†

Dilution Check: SEQ-SRD1 @50X

Analyte	Expected Conc.	Measured Conc.	Std. Dev.	Units	Difference (%)
Sc Radial	19.50	95.74	1.033	8	390.9
Al 396.153	441.8	437.3	23.193	ug/L	1.0
Ca 317.933	5490	5338	53.927	ug/L	2.8
Fe 238.204	653.6	633.6	23.068	ug/L	3.1
к 766.490	215.7	223.4	24.916	ug/L	3.6
Mg 285.213	709.5	695.5	9.955	ug/L	2.0
Na 589.592	296.9	293.3	8.249	ug/L	1.2
Sc Axial	19.62	98.71	0.210	8	403.2
Ag 328.068	0.0487	0.0549	0.852	ug/L	12.7
As 193.696	1.313	1.639	3.216	ug/L	24.8
Ba 233.527	6.190	6.313	0.091	ug/L	2.0
Be 313.107	0.0193	0.0240	0.021	ug/L	24.5
в 249.677	-0.9063	-2.057	0.441	ug/L	-126.9
Cd 214.440	0.0057	-0.1623	0.043	ug/L	2942.3
Co 228.616	0.3186	0.1922	0.344	ug/L	39.7
Cr 267.716	0.7343	0.9085	0.087	ug/L	23.7
Cu 324.752	1.340	0.9516	0.433	ug/L	29.0
Mn 257.610	67.01	67.06	0.511	ug/L	0.1
Mo 202.031	1.393	1.332	1.274	ug/L	4.4
Ni 231.604	0.9860	1.753	1.508	ug/L	77.8

Method: ESAT_2013_1.0		Page	9	Date: 12/10/2013 2:56:07 PM		
Pb 220.353	3.249	7.754	4.993	ug/L	138.7	
Sb 206.836	0.4988	6.895	8.864	ug/L	1282.1	
Se 196.026	-2.468	-16.60	5.507	ug/L	-572.6	
SiO2 251.603	1743	1716	10.243	ug/L	1.6	
Sr 421.552	70.83	70.19	0.245	ug/L	0.9	
Ti 334.940	4.510	4.540	0.498	ug/L	0.7	
Tl 190.801	1.910	4.550	9.483	ug/L	138.2	
V 290.880	0.651	0.757	0.350	ug/L	16.4	
Zn 206.200	7.031	6.354	0.220	ug/L	9.6	

Mr.

Sequence No.: 12 Sample ID: 1312035-MS1 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Autosampler Location: 31 Date Collected: 12/10/2013 2:56:46 PM Data Type: Original

Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1312035-MS1 @10X

Analyte

Back Pressure Flow

All 0.80 L/min 195.0 kPa

Mean Data: 131203	 35-MS1 @10X							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Sc Axial	3786618.0	97.53	ક	1.333				1.37%
Sc Radial	402228.5	95.25	ક	2.019				2.12%
Ag 328.068†	761.7	6.959	ug/L	0.2580	69.59	ug/L	2.580	3.71%
Al 396.153†	15059.1	2847	ug/L	65.6	28470	ug/L	655.7	2.30%
As 193.696†	32.7	78.10	ug/L	6.940	781.0	ug/L	69.40	8.89%
Ba 233.527†	1908.0	51.18	ug/L	0.488	511.8	ug/L	4.88	0.95%
Be 313.107†	30096.6	19.64	ug/L	0.072	196.4	ug/L	0.72	0.36%
В 249.677†	478.3	21.13	ug/L	0.736	211.3	ug/L	7.36	3.48%
Ca 317.933†	223941.8	27020	ug/L	665.6	270200	ug/L	6655.7	2.46%
Cd 214.440†	508.1	19.83	ug/L	0.054	198.3	ug/L	0.54	0.27%
Co 228.616†	353.4	22.06	ug/L	0.545	220.6	ug/L	5.45	2.47%
Cr 267.716†	965.5	44.17	ug/L	0.858	441.7	ug/L	8.58	1.94%
Cu 324.752†	7644.9	35.52	ug/L	0.875	355.2	ug/L	8.75	2.46%
Fe 238.204†	432.3	3599	ug/L	101.8	35990	ug/L	1017.6	2.83%
K 766.490†	3918.3	2077	ug/L	47.1	20770	ug/L	471.1	2.27%
Mg 285.213†	29825.9	3750	ug/L	97.5	37500	ug/L	975.1	2.60%
Mn 257.610†	157922.5	348.5	<u> </u>	0.83	3485	ug/L	8.3	0.24%
Mo 202.031†	72.5	41.32	ug/L	1.526	413.2	ug/L	15.26	3.69%
Na 589.592†	8837.0	1769	ug/L	39.4	17690	ug/L	393.7	2.23%
Ni 231.604†	618.5	55.68	ug/L	2.294	556.8	ug/L	22.94	4.12%
Pb 220.353†	220.4	115.3		4.19	1153	ug/L	41.9	3.63%
Sb 206.836†	44.8	57.31		3.343	573.1	•	33.43	5.83%
Se 196.026†	68.8	191.2		8.12	1912	ug/L	81.2	4.25%
SiO2 251.603†	110493.5	10890	ug/L	4.1	108900	ug/L	41.0	0.04%
Sr 421.552†	1443522.2	368.3	-	1.11	3683	ug/L	11.1	0.30%
Ti 334.940†	21772.9	50.82	_	3.401	508.2	_	34.01	6.69%
Tl 190.801†	161.9	202.2	_	4.17	2022	-	41.7	2.06%
V 290.880†	2720.9	33.99	.	0.438	339.9	J .	4.38	1.29%
Zn 206.200†	567.6	54.31	ug/L	0.211	543.1	ug/L	2.11	0.39%

Matrix Recovery Check: 1312035-MS1 @10X

•					
Analyte	Expected Conc.	Measured Conc.	Std. Dev.	Units	Recovery (%)
-1 226 452				/_	
Al 396.153	4209	2847	65.570	ug/L	31.9
Ca 317.933	28450	27020	665.565	ug/L	-43.4
Fe 238.204	6268	3599	101.755	ug/L	11.0
K 766.490	11080	2077	47.114	${\tt ug/L}$	10.0
Mg 285.213	5548	3750	97.514	ug/L	10.1
Na 589.592	4484	1769	39.369	ug/L	9.5
Ag 328.068	75.24	6.959	0.258	ug/L	9.0
As 193.696	806.6	78.10 🛊	6.940	ug/L	8.9
Ba 233.527	230.9	51.18	0.488	ug/L	10.1
Be 313.107	200.1	19.64	0.072	ug/L	9.8
В 249.677	295.5	21.13	0.736	ug/L	8.6
Cd 214.440	200.0	19.83	0.054	ug/L	9.9
Co 228.616	201.6	22.06	0.545	ug/L	10.2
Cr 267.716	403.7	44.17	0.858	ug/L	10.1
Cu 324.752	306.7	35.52	0.875	ug/L	9.6
Mn 257.610	535.0	348.5	0.827	ug/L	6.7
Mo 202.031	407.0	41.32	1.526	ug/L	8.6
Ni 231.604	504.9	55.68	2.294	${\tt ug/L}$	10.1
Pb 220.353	1016	115.3	4.190	ug/L	9.9
Sb 206.836	802.5	57.31	3.343	ug/L	6.9

Method: ESAT_2013_1.0		Page 1	.1		Date: 12/10/20	13 2:59:11 PM
Se 196.026	1988	191.2	8.125	ug/L	10.2	
SiO2 251.603	10720	10890	4.097	ug/L	108.4	
Sr 421.552	554.2	368.3	1.108	ug/L	7.1	
Ti 334.940	222.6	50.82	3.401	ug/L	14.1	
Tl 190.801	2010	202.2	4.166	ug/L	9.6	
V ·290.880	303.3	33.99	0.438	ug/L	10.2	
Zn 206.200	235.2	54.31	0.211	ua/L	9.6	

Sequence No.: 13 Sample ID: C131107-05 Analyst: S.VanOvermeiren Initial Sample Wt: Dilution:

Zn 206.200†

Autosampler Location: 32 Date Collected: 12/10/2013 2:59:50 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-05

Analyte Back Pressure Flow All 195.0 kPa 0.80 L/min

Mean Data: C131107-05 Calib | Name | Corrected | Calib | Std.Dev. | Conc. | Units | Std.Dev. | Conc. | Units | Std.Dev. | RSD | 0.25% | 421006.8 | 99.70 % | 1.683 | 1.69% | 1.69% | 1.25% | 1.270 | 227.2 | ug/L | 12.70 | 5.59% | 1.633 | 1.270 | 1.270 | 227.2 | ug/L | 12.70 | 5.59% | 1.66 | 3.233 | ug/L | 1.4610 | 3.233 | ug/L | 1.4610 | 45.20% | 4.228.8 | 60.09 | ug/L | 0.454 | 60.09 | ug/L | 0.454 | 0.76% | 0.5730 | -0.1676 | ug/L | 0.05730 | 34.19% | 1.4611 | -8.132 | ug/L | 0.2096 | -8.132 | ug/L | 0.2096 | 2.58% | 274841.7 | 33160 | ug/L | 717.3 | 33160 | ug/L | 717.3 | 2.16% | -5.8 | -0.2252 | ug/L | 0.49098 | -0.2252 | ug/L | 0.13495 | -0.2252 | ug/L | 0.13495 | 46.12% | -5.8 | -0.2252 | ug/L | 0.35477 | 0.8226 | ug/L | 0.35477 | 43.13% | 360.2 | 1.806 | ug/L | 0.35477 | 0.8226 | ug/L | 0.5262 | 29.13% | 23.6 | 191.8 | ug/L | 1.25 | 191.8 | ug/L | 1.25 | 0.56% | 1216.0 | 640.2 | ug/L | 38.03 | 640.2 | ug/L | 38.03 | 5.94% | 43580.7 | 5481 | ug/L | 115.5 | 5481 | ug/L | 1.55 | 2.11% | 7044.2 | 15.34 | ug/L | 0.196 | 15.34 | ug/L | 0.196 | 1.28% | 8.1 | 4.285 | ug/L | 0.4839 | 4.285 | ug/L | 0.196 | 1.28% | 57.5 | 5.170 | ug/L | 52.1 | 2.16% | 57.5 | 5.170 | ug/L | 2.0320 | 5.170 | ug/L | 2.0320 | 39.30% | -7.1 | -3.709 | ug/L | 3.7212 | 10.32% | 6.154 | ug/L | 6661 | ug/L | 67.78 | 67.79 | ug/L | 67.79 | Mean Corrected Sample Intensity Conc. Units Std.Dev. Conc. Units Analyte Std.Dev. RSD Sc Axial Sc Radial Ag 328.068t Al 396.153† As 193.696† Ba 233.527† Be 313.107† B 249.677† Ca 317.933† Cd 214.440† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.204† K 766.490† Mg 285.213† Mn 257.610† Mo 202.031† Na 589.592† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† SiO2 251.603† Sr 421.552† Ti 334.940† Tl 190.801† V 290.880†

Sequence No.: 14 Sample ID: 1312035-MS3 Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution:

Autosampler Location: 33
Date Collected: 12/10/2013 3:02:53 PM
Data Type: Original

Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1312035-MS3

AnalyteBack Pressure

Flow

194.0 kPa

0.80 L/min

Mean Data: 1312035	-MS3			Plan.				
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Sc Axial	3854745.5	99.29	ક	1.100				1.11%
Sc Radial	420847.0	99.66	ક	0.827				0.83%
Ag 328.068†	8891.8	72.74	ug/L	1.150	72.74	ug/L	1.150	1.58%
Al 396.153†	11060.9	2079	ug/L	43.1	2079	ug/L	43.1	2.07%
As 193.696†	359.1	817.2	ug/L	3.52	817.2	ug/L	3.52	0.43%
Ba 233.527†	9525.8	257.6	ug/L	2.05	257.6	ug/L	2.05	0.80%
Be 313.107†	302359.8	198.0	ug/L	0.64	198.0	ug/L	0.64	0.32%
В 249.677†	6681.9	295.2	ug/L	2.78	295.2	ug/L	2.78	0.94%
Ca 317.933†	276292.3	33310	J .	441.2	33310	ug/L	441.2	1.32%
Cd 214.440†	5021.9	196.1	ug/L	1.71	196.1	ug/L	1.71	0.87%
Co 228.616†	3171.0	198.0	ug/L	0.90	198.0	ug/L	0.90	0.45%
Cr 267.716†	8891.8	405.4	ug/L	2.47	405.4	ug/L	2.47	0.61%
Cu 324.752†	63088.3	286.8		2.02	286.8	ug/L	2.02	0.70%
Fe 238.204†	362.0	3005	ug/L	15.5	3005	ug/L	15.5	0.52%
K 766.490†	19282.4	10150	ug/L	80.9	10150	ug/L	80.9	0.80%
Mg 285.213†	58032.8		ug/L	88.4	7295		88.4	1.21%
Mn 257.610†	96633.3	212.8	ug/L	1.31	212.8	ug/L	1.31	0.61%
Mo 202.031†	689.8	397.2	ug/L	6.33	397.2	ug/L	6.33	1.59%
Na 589.592†	25998.7	5195	ug/L	71.4	5195	ug/L	71.4	1.38%
Ni 231.604†	5572.5	504.4	.	4.46	504.4	J .	4.46	0.88%
Pb 220.353†	1881.1	983.7	ug/L	8.44	983.7	ug/L	8.44	0.86%
Sb 206.836†	584.5	787.4	ug/L	1.58	787.4	ug/L	1.58	0.20%
Se 196.026†	701.5	1966	${ m ug/L}$	3.7	1966	ug/L	. 3 . 7	0.19%
SiO2 251.603†	85564.3	8424	ug/L	46.7	8424	ug/L	46.7	0.55%
Sr 421.552†	1889209.6	482.0	ug/L	0.61	482.0	ug/L	0.61	0.13%
Ti 334.940†	87493.2	204.2	ug/L	1.14	204.2	ug/L	1.14	0.56%
Tl 190.801†	1568.7	1992	ug/L	16.5	1992		16.5	0.83%
V 290.880†	22656.2	295.4	ug/L	2.18	295.4	ug/L	2.18	0.74%
Zn 206.200†	2041.3	196.1	ug/L	0.88	196.1	ug/L	0.88	0.45%

Matrix Recovery Check: 1312035-MS3

Analyte	Expected	Measured	Std.	Units	Recovery
	Conc.	Conc.	Dev.		(%)
Al 396.153	2227	2079	43.075	ug/L	92.6
Ca 317.933	34160	33310	441.195	ug/L	15.3
Fe 238.204	3192	3005	15.538	ug/L	93.8
K 766.490	10640	10150	80.864	ug/L	95.1
Mg 285.213	7481	7295	88.364	ug/L	90.7
Na 589.592	5410	5195	71.435	ug/L	92.8
Ag 328.068	75.42	72.74	1.150	ug/L	96.4
As 193.696	803.2	817.2	3.524	ug/L	101.7
Ba 233.527	260.1	257.6	2.051	ug/L	98.8
Be 313.107	199.8	198.0	0.638	ug/L	99.1
В 249.677	291.9	295.2	2,785	ug/L	101.1
Cd 214.440	199.7	196.1	1.710	ug/L	98.2
Co 228.616	199.8	198.0	0.896	${\tt ug/L}$	99.1
Cr 267.716	400.8	405.4	2.473	ug/L	101.1
Cu 324.752	301.8	286.8	2.021	ug/L	95.0
Mn 257.610	215.3	212.8	1.307	ug/L	98.7
Mo 202.031	404.3	397.2	6.329	ug/L	98.2
Ni 231.604	505.2	504.4	4.459	ug/L	99.8
Pb 220.353	996.3	983.7	8.441	ug/L	98.7
Sb 206.836	802.1	787.4	1.578	ug/L	98.2

Method: ESAT_2013_1.0		Page	14		Date: 12/10/	2013 3:05:19 PM
Se 196.026	1992	1966	3.656	ug/L	98.7	
SiO2 251.603	8061	8424	46.677	ug/L	118.1	
Sr 421.552	489.3	482.0	0.614	ug/L	96.3	
Ti 334.940	203.0	204.2	1.138	ug/L	100.6	
Tl 190.801	2008	1992	16.457	ug/L	99.2	
V 290.880	301.4	295.4	2.179	ug/L	98.0	
Zn 206.200	202.2	196.1	0.876	ua/L	96.9	•

Sequence No.: 15 Sample ID: C131107-08 Analyst: S.VanOvermeiren Initial Sample Wt:

Dilution:

Autosampler Location: 34 Date Collected: 12/10/2013 3:05:59 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-08

Analyte All

Back Pressure

Flow

195.0 kPa 0.80 L/min

Mean Data: C1311	L07-08							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Sc Axial	3827296.3	98.58	8	0.187			. ().19%
Sc Radial	419384.3	99.32	૪	0.485			C).49%
Ag 328.068†	1.6	0.6770		0.64530	0.6770	ug/L	0.64530 95	5.31%
Al 396.153†	1016.6	185.5	ug/L	6.65	185.5	ug/L	6.65 3	3.59%
As 193.696†	2.6	5.157	ug/L	7.9154	5.157	ug/L	7.9154 153	.50%
Ba 233.527†	2364.1	63.67	ug/L ·	0.167	63.67	ug/L	0.167).26%
Be 313.107†	-96.4	-0.1410	ug/L	0.01666	-0.1410	ug/L	0.01666 11	1.82%
в 249.677†	-163.0	-7.199	ug/L	0.3412	-7.199	ug/L	0.3412 4	1.74%
Ca 317.933†	321125.3	38750	ug/L	478.2	38750	ug/L	478.2 1	23%
Cd 214.440†	-5.4	-0.1737	ug/L	0.15235	-0.1737	ug/L	0.15235 87	7.73%
Co 228.616†	-1.8	0.0421	ug/L	0.47110	0.0421	ug/L	0.47110 >99	19.98
Cr 267.716†	13.1	1.112	ug/L	0.3603	1.112	ug/L	0.3603 32	.39%
Cu 324.752†	311.0	1.609	ug/L	0.1717	1.609	ug/L	0.1717 10).67%
Fe 238.204†	22.0	178.2	ug/L	15.58	178.2	ug/L	15.58 8	3.74%
к 766.490†	1461.0	765.1	ug/L	15.77	765.1	ug/L	15.77 2	.06%
Mg 285.213†	47524.0	5977	ug/L	69.1	5977	ug/L	69.1 1	.16%
Mn 257.610†	28770.4	63.29	ug/L	0.473	63.29	ug/L	0.473 0	1.75%
Mo 202.031†	9.6	5.141	ug/L	2.3909	5.141	ug/L	2.3909 46	.50%
Na 589.592†	13371.0	2687	ug/L	36.1	2687	ug/L	36.1 1	34%
Ni 231.604†	43.5	3.909	ug/L	0.3134	3.909	ug/L	0.3134 8	3.02%
Pb 220.353†	-0.9	-0.4994	ug/L	6.00261	-0.4994	ug/L	6.00261 >99	9.9%
Sb 206.836†	4.6	3.926	ug/L	3.9489	3.926	ug/L	3.9489 100	.59%
Se 196.026†	-0.2	-2.946	ug/L	5.2068-	-2.946	ug/L	5.2068 176	.71%
SiO2 251.603†	64848.4	6388	ug/L	50.4	6388	ug/L	50.4 0	.79%
Sr 421.552†	1421808.4	362.9	ug/L	0.29	362.9	ug/L	0,29 0	.08%
Ti 334.940†	878.2	2.050	ug/L	0.1211	2.050	ug/L	0.1211 5	.91%
Tl 190.801†	9.6	9.513	ug/L	0.4559	9.513	ug/L	0.4559 4	.79%
V 290.880†	103.6	0.028	ug/L	0.6711	0.028	ug/L	0.6711 >99	9.9%
Zn 206.200†	71.8	6.398	ug/L	0.5290	6.398	ug/L	0.5290 8	.27%

Sequence No.: 16 Sample ID: Blank

Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 35

Date Collected: 12/10/2013 3:09:03 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: Blank

Analyte All

Back Pressure Flow

194.0 kPa 0.80 L/min

Mean Data: Blank							
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3797166.8	97.80	용	0.284			0.29%
Sc Radial	405947.9	96.13	8	1.723			1.79%
Ag 328.068†	-55.9	-0.4465	ug/L	0.80526	-0.4465	${\tt ug/L}$	0.80526 180.36%
Al 396.153†	24.2	4.682	${\tt ug/L}$	24.8691	4.682	${\tt ug/L}$	24.8691 531.12%
As 193.696†	1.9	4.226	ug/L	6.4379	4.226	ug/L	6.4379 152.34%
Ba 233.527†	-1.4	-0.0345	ug/L	0.03624	-0.0345	ug/L	0.03624 105.04%
Be 313.107†	28.4	0.0185	ug/L	0.01901	0.0185	ug/L	0.01901 102.65%
в 249.677†	-68.9	-3.042	ug/L	0.2289	-3.042	ug/L	0.2289 7.53%
Ca 317.933†	19.9	2.439	ug/L	2.4809	2.439	ug/L	2.4809 101.70%
Cd 214.440†	-3.7	-0.1433	ug/L	0.09181	-0.1433	ug/L	0.09181 64.07%
Co 228.616†	1.5	0.0933	ug/L	0.19130	0.0933	ug/L	0.19130 205.08%
Cr 267.716†	2.5	0.1120	ug/L	0.24253	0.1120	ug/L	0.24253 216.63%
Cu 324.752†	-55.5	-0.2479	ug/L	0.33161	-0.2479	ug/L	0.33161 133.75%
Fe 238.204†	4.3	36.20	ug/L	42.248	36.20	ug/L	42.248 116.72%
K 766.490†	58.5	30.64	ug/L	13.835	30.64	ug/L	13.835 45.16%
Mg 285.213†	-10.1	-1.256	ug/L	0.4884	-1.256	ug/L	0.4884 38.90%
Mn 257.610†	-11.6	-0.0235	ug/L	0.03765	-0.0235	ug/L	0.03765 160.09%
Mo 202.031†	-3.7	-2.126	ug/L	0.3249	-2.126	ug/L	0.3249 15.28%
Na 589.592†	-33.2	-6.598	ug/L	9.3727	-6.598	ug/L	9.3727 142.05%
Ni 231.604†	5.7	0.5094	ug/L	1.13653	0.5094	ug/L	1.13653 223.10%
Pb 220.353†	5.8	3.061	ug/L	1.0637	3.061	ug/L	1.0637 34.75%
Sb 206.836†	4.4	6.021	ug/L	7.2741	6.021	ug:/L	7.2741 120.82%
Se 196.026†	-11.5	-32.28	ug/L	28.851	-32.28	ug/L	28.851 89.39%
SiO2 251.603†	-33.4	-3.305	ug/L	1.1373	-3.305	ug/L	1.1373 34.42%
Sr 421.552†	1444.3	0.367	ug/L	0.0778	0.367	ug/L	0.0778 21.20%
Ti 334.940†	15.7	0.037	ug/L	0.1052	0.037	ug/L	0.1052 286.69%
Tl 190.801†	5.5	6.967	ug/L	8.8054	6.967	ug/L	8.8054 126.39%
V 290.880†	-16.1	-0.223	ug/L	0.4956	-0.223	ug/L	0.4956 222.57%
Zn 206.200†	-8.5	-0.824	ug/L	0.5954	-0.824	ug/L	0.5954 72.27%

Sequence No.: 17 Sample ID: SEQ-CCV Analyst: Initial Sample Wt: Dilution: Autosampler Location: 3
Date Collected: 12/10/2013 3:12:07 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-CCV

AnalyteBack Pressure

Flow

194.0 kPa

0.80 L/min

Mean Data: SEQ-CCV								
mean baca. blg cev	Mean Corrected	Ca	alib			Sample		
Analyte	Intensity	Conc IIr		Std.Dev.	Conc.	Units	Std.Dev.	RSD
Sc Axial	3774350.0	97.22 %		0.972				1.00%
				1.233				1.27%
Sc Radial Ag 328.068†	31360.8	97.33 % 252.9 ug	g/L	1.95	252.9	ug/L	1.95	0.77%
QC value within	limits for Ag 328	3.068 Rec	covery =	101.14%				
Al 396.153†	00227.			142.8	12360	ug/L	142.8	1.16%
QC value within	limits for Al 396	5.153 Rec	covery =	98.85%				
As 193.696†		2573 ug		20.2	2573	${\tt ug/L}$	20.2	0.78%
	limits for As 193							
		504.0 ug		3.98	504.0	ug/L	3.98	0.79%
	limits for Ba 233							
Be 313.107†	768669.0	503.4 ug		1.97	503.4	ug/L	1.97	0.39%
	limits for Be 313	.107 Rec	covery =			/		1 000
В 249.677†		5030 ug			5030	ug/L	55.1	1.09%
	limits for B 249.				10100	/-	116.2	0 050
	101475.0				12180	ug/L	116.3	0.95%
	limits for Ca 317				E00 3	/T	5.06	1.00%
cd 214.440†		508.3 ug		5.06	508.3	ug/L	5.06	1.00%
	limits for Cd 214				. E00 7	/T	4.67	0.92%
		508.7 ug		4.67	508.7	ug/L	4.07	0.926
	limits for Co 228 55984.6	2548 ug			2510	/T	36.4	1.43%
Cr 267.716†		_		36.4	234o	ug/L	30.4	1.450
	limits for Cr 267 218243.6	991.0 ug			991.0	1107 /T	8.77	0.89%
Cu 324.752†		-			991.0	ug/L	0.77	0.05%
	limits for Cu 324 1422.2			198.1	11840	1107 /T	198.1	1.67%
	limits for Fe 238				11040	ug/11	170.1	1.070
K 766.490†	45974.0	24220 ug		302.2	24220	110 /T.	302.2	1.25%
	limits for K 766.	_			24220	ug/ L	502.2	1.250
		12420 ug		125.6	12420	ua/L	125.6	1.01%
	limits for Mg 285				12120	ug/ L	110.0	1.010
Mn 257.610†		1013 ug		2.8	1013	ua/L	2.8	0.27%
	limits for Mn 257					5, -		
Mo 202.031†	877.8	504.3 ug			504.3	ua/L	4.03	0.80%
•	limits for Mo 202	_				3.		
	60583.4				12100	ug/L	118.4	0.98%
	limits for Na 589							
Ni 231.604†	28159.8	2548 ug		18.4	2548	ug/L	18.4	0.72%
QC value within	limits for Ni 231	.604 Rec	overy =	101.92%				
Pb 220.353†	4863.7	2545 ug	r/L	20.2	2545	ug/L	20.2	0.79%
QC value within	limits for Pb 220			101.81%				
Sb 206.836†	1888.4	2530 ug	r/L	40.8	2530	ug/L	40.8	1.61%
	limits for Sb 206							
Se 196.026†	910.9	2558 ug	r/L	34.0	2558	ug/L	34.0	1.33%
QC value within	limits for Se 196			102.34%				
SiO2 251.603†		10080 ug		108.3	10080	ug/L	108.3	1.07%
QC value within	limits for SiO2 2	51.603 R	lecovery					
Sr 421.552†	1976637.4	503.7 ug		0.90	503.7	ug/L	0.90	0.18%
	limits for Sr 421							1 600
Ti 334.940†	216631.5	505.7 ug		5.15	505.7	ug/L	5.15	1.02%
· ·	limits for Ti 334				0.555		0.0	1 100
Tl 190.801†	2021.5	2573 ug		29.2	2573	ug/L	29.2	1.13%
	limits for Tl 190				4044	/ =	0 0	0 000
V 290.880†	77619.5	1014 ug	7/上	9.8	1014	ug/L	9.8	0.96%
QC value within	limits for V 290.	880 Reco	overy = 1	U1.448				

Method: ESAT_2013_1.0

Page 18

Date: 12/10/2013 3:14:34 PM

Zn 206.200† 26064.1 2547 ug/L 20.7 QC value within limits for Zn 206.200 Recovery = 101.90% All analyte(s) passed QC.

2547 ug/L

20.7 0.81%

Sequence No.: 18 Sample ID: SEQ-CCB Analyst: Initial Sample Wt: Dilution: Autosampler Location: 1
Date Collected: 12/10/2013 3:15:14 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-CCB

AnalyteBack Pressure

Flow

194.0 kPa

0.80 L/min

Mean Da	ta: SEQ-CCB	Mean Correcte	a	Calib			Sample		
Analvte		Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Sc Axia	1	Intensity 3749800.3 419024.1 -200.6	96.58	8	0.542		0	254.25	0.56%
Sc Radi	al	419024.1	99.23	ે ક	2.045				2.06%
Ag 328.	068†	-200.6	-1.590	${\tt ug/L}$	0.4812	-1.590	ug/L	0.4812	30.27%
QC v	alue within	limits for Ag	328.068	Recovery	= Not calculat	ted			
Al 396.			20.69				ug/L	12.304	59.48%
	alue within	limits for Al	396.153						
As 193.		-1.5			5.7325	-3.367	ug/L	5.7325	170.28%
	alue within	limits for As	193.696	Recovery	= Not calculat	ted	/#	0 10507	054 200
Ba 233.	04/T 21::0 ::::thin	3.0 limits for Ba	0.0770	ug/L	0.1958/	0.0770	ug/L	0.1958/	254.386
Be 313.		-301.6					110 /T	0 06286	31 729
		limits for Be					ug/L	0.00200	31.720
в 249.6	77+	156.0	6 890	na/L	1 4799	6 890	ug/L	1 4799	21 48%
	alue within	limits for B	249.677 R	ecoverv =	Not calculate	ed .			
Ca 317.		2.1			1.48523	0.1929	ug/L	1.48523	770.00%
		limits for Ca		Recovery	= Not calculat	ted			
Cd 214.	440†	-5.2	-0.2022	ug/L	0.05215	-0.2022	ug/L	0.05215	25.79%
QC v		limits for Cd		Recovery	= Not calculat	ted			
Co 228.		2.2					ug/L	0.54502	402.25%
	alue within	limits for Co	228.616	Recovery	= Not calculat	ced		•	
Cr 267.	7.16†	5.6	0.2597	ug/L	0.04628	0.2597	ug/L	0.04628	17.82%
		limits for Cr					-		04 500
Cu 324.		302.5					ug/L	0.2955	21.50%
		limits for Cu					/T	22 272	124 000
Fe 238.2		3.0 limits for Fe	24.74	ug/L	33.373	24.74	ug/L	33.373	134.886
K 766.49		326.1		recovery	45.14	172 2	ua/I.	45.14	26 22%
		limits for K		coverv =	Not calculate	-d	ug/ L	13.11	20.220
Mg 285.2		3.9				0.4774	ug/L	1.13400	237.55%
		limits for Mg					3.		
Mn 257.6					0.03005		ug/L	0.03005	27.96%
QC va	alue within	limits for Mn	257.610 H	Recovery	= Not calculat	ted			
Mo 202.0		0.7					ug/L	0.51808	132.20%
		limits for Mo	202.031 H	Recovery					
Na 589.5		-20.3	-4.122	ug/L	4.6091	-4.122	ug/L	4.6091	111.81%
		limits for Na		Recovery	= Not calculat	ted	/	0 0000	10 110
Ni 231.6			4.654	ug/L	0.8893	4.654	ug/L	0.8893	19.11%
Pb 220.3		limits for Ni 2.0				1 027	ug /T	2.6783	260 759
		limits for Pb				1.027 - pd	ug/L	2.0703	200.75%
Sb 206.8			27.53		12.370		ug/L	12.370	44.93%
		limits for Sb				:ed	49/1	12.570	11.300
Se 196.0		-8.2				-22.96	ua/L	12.125	52.82%
QC va		limits for Se				ed			
SiO2 251		-50.0	-4.731		0.6222	-4.731	ug/L	0.6222	13.15%
		limits for Sic			y = Not calcul				
Sr 421.5		2909.8	0.741		0.1215	0.741	ug/L	0.1215	16.39%
		limits for Sr					/-	0 000=	6 2 40
Ti 334.9		194.0	0.453		0.0287	0.453	ug/L	0.0287	6.34%
		limits for Ti					/T	A 02E4	65 570
Tl 190.8		5.0 limits for Tl	6.460		4.2354	6.460	ug/ь	4.2354	65.57%
V 290.88			2.834		0.7892	2.834	110 / I.	0 7892	27.85%
		limits for V 2					~9/ L	0.7002	27.000
20 00									

Method: ESAT_2013_1.0

Page 20

Date: 12/10/2013 3:17:36 PM

Zn $206.200 \dagger$ 2.0 0.194 ug/L 0.5125 QC value within limits for Zn 206.200 Recovery = Not calculated

0.5125 0.194 ug/L

0.5125 264.80%

All analyte(s) passed QC.

Sequence No.: 19

Sample ID: C131107-10 @10X Analyst: S.VanOvermeiren Initial Sample Wt:

Dilution: 10X

Autosampler Location: 36

Date Collected: 12/10/2013 3:18:15 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-10 @10X

Analyte

Back Pressure Flow

A11 194.0 kPa 0.80 L/min

Mean Data: C1311	07-10 @10x						
	Mean Corrected		Calib			\mathtt{Sample}	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3832364.9	98.71		0.276			0.289
Sc Radial	407295.3	96.45		1.249		,	1.309
Ag 328.068†	-43.7	0.2539	J	0.47533	2.539	-	4.7533 187.229
Al 396.153†	294.0	55.83	ug/L	12.469	558.3	J	124.69 22.339
As 193.696†	-1.0	-2.609	ug/L	3.5614	-26.09	ug/L	35.614 136.519
Ba 233.527†	76.7	1.589	ug/L	0.1572	15.89	ug/L	1.572 9.899
Be 313.107†	83.1	0.0014	ug/L	0.01346	0.0141	ug/L	0.13457 954.149
в 249.677†	-52.8	-2.331	ug/L	0.5706	-23.31	ug/L	5.706 24.489
Ca 317.933†	189197.7	22830	ug/L	281.3	228300	ug/L	2813.4 1.239
Cd 214.440†	65.9	2.578	ug/L	0.1072	25.78	ug/L	1.072 4.169
Co 228.616†	11.5	0.7789	ug/L	0.67947	7.789	ug/L	6.7947 87.238
Cr 267.716†	-0.3	0.2630	ug/L	0.20760	2.630	ug/L	2.0760 78.948
Cu 324.752†	1266.9	5.946	ug/L	0.5228	59.46	ug/L	5.228 8.798
Fe 238.204†	30.5	251.3	ug/L	55.24	2513	ug/L	552.4 21.98%
к 766.490†	695.8	342.2	ug/L	54.62	3422	ug/L	546.2 15.968
Mg 285.213†	15996.5	2011	ug/L	22.7	20110	ug/L	227.2 1.138
Mn 257.610†	91319.5	201.5	ug/L	1.72	2015	ug/L	17.2 0.868
Mo 202.031†	5.6	3.181	ug/L	1.5059	31.81	ug/L	15.059 47.348
Na 589.592†	5846.0	1172	ug/L	36.8	11720	ug/L	368.1 3.14%
Ni 231.604†	29.9	2.731	ug/L	0.3719	27.31	ug/L	3.719 13.62%
Pb 220.353†	-2.7	-1.758	ug/L	0.6891	-17.58	ug/L	6.891 39.19%
Sb 206.836†	4.9	4.960	ug/L	8.7110	49.60	ug/Li	87.110 175.63%
Se 196.026†	-6.6	-18.74	ug/L	2.890	-187.4	ug/L	28.90 15.42%
SiO2 251.603†	16283.3	1598	ug/L	18.9	15980		188.7 1.18%
Sr 421.552†	1509744.5	385.5		0.96	3855		9.6 0.25%
Ti 334.940+	83.0	0.194		0.0747	1.938		0.7466 38.52%
Tl 190.801†	4.8	4.221	-	5.6304	42.21	ug/L	56.304 133.41%
V 290.880†	50.7	-0.492		0.2822	-4.918		2.8218 57.37%
Zn 206.200†	5089.1	497.9		1.12	4979	_	11.2 0.23%

Sequence No.: 20

Sample ID: C131107-13 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Autosampler Location: 37 Date Collected: 12/10/2013 3:21:21 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-13 @10X

Back Pressure Flow Analyte

0.80 L/min

All 195.0 kPa

Mean Data: C1311	.07-13 @10X Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3795137.0	97.75	ક	0.740			0.769
Sc Radial	403812.3	95.63	ક	3.197			3.349
Ag 328.068†	-148.7	-0.5599	ug/L	1.07343	-5.599	ug/L	10.7343 191.719
Al 396.153†	236.6	45.07	ug/L	12.421	450.7	ug/L	124.21 27.569
As 193.696†	0.8	1.416	ug/L	6.4756	14.16	ug/L	64.756 457.399
Ba 233.527†	76.9	1.576	ug/L	0.0823	15.76	ug/L	0.823 5.229
Be 313.107†	-291.9	-0.2463	ug/L	0.04261	-2.463	ug/L	0.4261 17.309
в 249.677†	-160.3	-7.079	ug/L	0.8087	-70.79	ug/L	8.087 11.429
Ca 317.933†	197241.5	23800	ug/L	759.1	238000	ug/L	7591.0 3.199
Cd 214.440+	59.9	2.345	ug/L	0.2067	23.45	ug/L	2.067 8.829
Co 228.616†	-2.2	-0.0700	ug/L	0.40829	-0.7004	ug/L	4.08287 582.939
Cr 267.716†	-0.3	0.2845	ug/L	0.20363	2.845	ug/L	2.0363 71.579
Cu 324.752†	1027.3	4.857	ug/L	0.2617	48.57	ug/L	2.617 5.399
Fe 238.204†	23.3	191.1	ug/L	21.34	1911	ug/L	213.4 11.179
к 766.490†	578.7	279.0	ug/L	9.00	2790	ug/L	90.0 3.239
Mg 285.213†	16600.6	2087	ug/L	72.2	20870	ug/L	721.5 3.469
Mn 257.610†	90176.7	199.0	ug/L	0.84	1990	ug/L	8.4 0.428
Mo 202.031†	2.4	1,356	ug/L	1.9185	13.56	ug/L	19.185 141.518
Na 589.592†	6064.1	1215	ug/L	38.5	12150	ug/L	384.9 3.178
Ni 231.604†	47.4	4.331	ug/L	1.6775	43.31	ug/L	16.775 38.748
Pb 220.353†	-2.2	-1.504	ug/L	2.1271	-15.04	ug/L	21.271 141.438
Sb 206.836†	9.8	11.49	ug/L	3.600	114.9	ug/L	36.00 31.34%
Se 196.026†	-6.8	-19.52	ug/L	12.600	-195.2	ug/L	126.00 64.56%
SiO2 251.603†	16473.0	1617	ug/L	17.6	16170	ug/L	175.7 1.09%
Sr 421.552†	1569734.0	400.8	ug/L	1.16	4008	ug/L	11.6 0.29%
Ti 334.940†	41.2	0.096	ug/L	0.1111	0.962.	ug/L	1.1110 115.51%
Tl 190.801†	1.0	-0.586	ug/L	5.1735	-5.860	ug/L	51.7349 882.92%
V 290.880†	213.4	1.591	ug/L	0.4485	15.91	ug/L	4.485 28.19%
Zn 206.200†	4947.8	484.1	ug/L	3.78	4841	ug/L	37.8 0.78%

Sequence No.: 21

Sample ID: C131107-15 @10X Analyst: S. Van Overmeiren

Initial Sample Wt: Dilution: 10X

Autosampler Location: 38

Date Collected: 12/10/2013 3:24:27 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-15 @10X

Analyte Back Pressure All

Flow 194.0 kPa 0.80 L/min

Mean Data: C131107	-15 @10X							
	Mean Corrected		Calib			\mathtt{Sample}		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RS	D
Sc Axial	3842718.0	98.98	%	1.047			1.0	68
Sc Radial	421428.2	99.80	8	0.602			0.6	0%
Ag 328.068†	-92.1	-0.1220	ug/L	0.39877	-1.220	ug/L	3.9877 326.9	0%
Al 396.153†	191.9	36.47	ug/L	17.719	364.7	ug/L	177.19 48.5	98
As 193.696†	3.4	7.136	ug/L	3.1295	71.36	ug/L	31.295 43.8	5%
Ba 233.527†	81.7	1.716	ug/L	0.0666	17.16	ug/L	0.666 3.8	88
Be 313.107†	-129.3	-0.1391	ug/L	0.08584	-1.391	ug/L	0.8584 61.7	0%
в 249.677†	-137.0	-6.051	ug/L	1.3866	-60.51	ug/L	13.866 22.93	1%
Ca 317.933†	196233.5	23680	ug/L	188.1	236800	ug/L	1881.2 0.79	9ક
Cd 214.440†	54.1	2.120	ug/L	0.1132	21.20	ug/L	1.132 5.34	4%
Co 228.616†	4.1	0.3295	ug/L	0.57991	3.295	ug/L	5.7991 175.99	9ક
Cr 267.716†	6.2	0.5874	ug/L	0.15865	5.874	ug/L	1.5865 27.03	1%
Cu 324.752†	531.8	2.586	ug/L	0.2163	25.86	ug/L	2.163 8.36	6%
Fe 238.204†	7.3	57.68	ug/L	14.734	576.8	ug/L	147.34 25.55	5%
К 766.490†	691.7	339.5	ug/L	22.20	3395	ug/L	222.0 6.54	4 %
Mg 285.213†	17070.6	2146	ug/L	14.9	21460	ug/L	148.6 0.69	9 %
Mn 257.610†	81278.3	179.4	ug/L	0.94	1794	ug/L	9.4 0.52	2%
Mo 202.031†	4.0	2.267	ug/L	2.7951	22.67	ug/L	27.951 123.33	1%
Na 589.592†	6092.2	1221	ug/L	10.7	12210	ug/L	107.0 0.88	88
Ni 231.604†	22.4	2.087	ug/L	2.0913	20.87	ug/L	20.913 100.19	9 ક
Pb 220.353†	-1.5	-1.147	ug/L	3.4204	-11.47	ug/L	34.204 298.0	7 %
Sb 206.836†	2.2	1.296	ug/L	5.9611	12.96	ug/L	59.611 459.84	4 %
Se 196.026†	-7.3	-20.90	ug/L	2.818	-209.0	ug/L	28.18 13.49	98
SiO2 251.603†	16416.7	1611	ug/L	17.2	16110	ug/L	172.2 1.07	7왕
Sr 421.552†	1551427.7	396.1	ug/L	0.65	3961	ug/L	6.5 0.16	58
Ti 334.940†	26.4	0.062	ug/L	0.0410	0.617	ug/L	0.4100 66.45	5 g
Tl 190.801†	4.6	3.963	ug/L	8.0065	39.63	ug/L	80.065 202.04	1 %
V 290.880†	40.1	-0.635		0.4312	-6.355	ug/L	4.3119 67.85	58
Zn 206.200†	4244.8	415.2	ug/L	5,54	4152	ug/L	55.4 1.34	1 %

Sequence No.: 22

Sample ID: C131107-17 @10X Analyst: S.VanOvermeiren Initial Sample Wt:

Dilution: 10X

Autosampler Location: 39

Date Collected: 12/10/2013 3:27:31 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-17 @10X

Analyte Back Pressure Flow

All 194.0 kPa 0.80 L/min

Mean Data: C13110	7-17 @10X						
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3833647.2	98.74	ક	0.434			0.44%
Sc Radial	415838.1	98.48	ક	1.242			1.26%
Ag 328.068†	-85.4	-0.0354	ug/L	0.15960	-0.3540	${ m ug/L}$	1.59599 450.89%
Al 396.153†	195.0	36.67	ug/L	5.185	366.7	${\tt ug/L}$	51.85 14.14%
As 193.696†	-2.3	-5.711	ug/L	7.1015	-57.11	ug/L	71.015 124.35%
Ba 233.527†	73.0	1.446	ug/L	0.0571	14.46	${ m ug/L}$	0.571 3.95%
Be 313.107†	-32.3	-0.0790	ug/L	0.03934	-0.7904	ug/L	0.39337 49.77%
В 249.677†	-155.1	-6.849	ug/L	0.3464	-68.49	${ m ug/L}$	3.464 5.06%
Ca 317.933†	211555.2	25520	ug/L	320.7	255200	ug/L	3206.5 1.26%
Cd 214.440†	39.3	1.548	ug/L	0.1989	15.48	ug/L	1.989 12.85%
Co 228.616†	2.7	0.2511	ug/L	0.26773	2.511	ug/L	2.6773 106.63%
Cr 267.716†	-4.9	0.1141	ug/L	0.32709	1.141	ug/L	3.2709 286.77%
Cu 324.752†	189.1	1.046	ug/L	0.4119	10.46	ug/L	4.119 39.38%
Fe 238.204†	9.0	71.92	ug/L	13.843	719.2	ug/L	138.43 19.25%
K 766.490†	828.6	412.0	ug/L	25.52	4120	ug/L	255.2 6.19%
Mg 285.213†	19693.8	2476	ug/L	37.0	24760	ug/L	370.3 1.50%
Mn 257.610†	75572.1	166.7	ug/L	2.03	1667	ug/L	20.3 1.22%
Mo 202.031†	4.6	2.611	ug/L	2.6152	26.11	ug/L	26.152 100.16%
Na 589.592†	7420.5	1488	ug/L	26.9	14880	uġ/L	269.1 1.81%
Ni 231.604†	44.5	4.074	ug/L	1.2501	40.74	ug/L	12.501 30.68%
Pb 220.353†	-0.7	-0.7011	ug/L	2.06394	-7.011	ug/L	20.6394 294.37%
Sb 206.836†	1.4	0.0635	ug/L	3.52282	0.6347	ug/L	35.22820 >999.9%
Se 196.026†	3.4	9.070	ug/L	11.7933	90.70	ug/L	117.933 130.02%
SiO2 251.603†	18848.8	1851	ug/L	31.4	18510		313.7 1.69%
Sr 421.552†	1596593.6	407.6	ug/L	0.61	4076	ug/L	6.1 0.15%
Ti 334.940†	25.5	0.060	ug/L	0.0387	0.596	ug/L	0.3875 65.06%
Tl 190.801†	3.5	2.461	ug/L	7.5961	24.61	ug/L	75.961 308.63%
V 290.880†	38.2	-0.721	ug/L	0.2032	-7.211	ug/L	2.0315 28.17%
Zn 206.200†	3731.0	364.9	ug/L	2.20	3649	ug/L	22.0 0.60%

Sequence No.: 23 Sample ID: C131107-20 Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 40
Date Collected: 12/10/2013 3:30:35 PM
Data Type: Original

Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-20

AnalyteBack Pressure

Flow

194.0 kPa

0.80 L/min

Mean Data: C131	107-20							
	Mean Corrected		Calib			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Sc Axial	3790918.4	97.64	8	0.605				0.62%
Sc Radial	419864.5	99.43		1.775				1.79%
Ag 328.068†	-136.8	0.1927	J .	0.50247	0.1927			0.69%
Al 396.153†	664.7	118.7	${\tt ug/L}$	5.79	118.7	ug/L	5.79	4.88%
As 193.696†	-2.9	-7.785	ug/L	7.1306	-7.785	J .		1.60%
Ba 233.527†	2283.3	60.95	ug/L	0.309	60.95	ug/L	0.309	0.51%
Be 313.107†	-123.1	-0.2121	${\tt ug/L}$	0.04772	-0.2121	ug/L	0.04772 2	2.50%
в 249.677†	-252.4	-11.15	ug/L	0.947	-11.15	ug/L	0.947	8.50%
Ca 317.933†	508729.5	61380	${\tt ug/L}$	1284.9	61380	ug/L	1284.9	2.09%
Cd 214.440†	10.6	0.4654	ug/L	0.07128	0.4654	ug/L	0.07128 1	5.32%
Co 228.616†	2.6	0.3987	ug/L	0.29257	0.3987	ug/L	0.29257 7	3.37%
Cr 267.716†	-4.4	0.6495	ug/L	0.33964	0.6495	ug/L	0.33964 5	2.29%
Cu 324.752†	436.1	2.360	ug/L	0.3743	2.360	ug/L	0.3743 1	5.86%
Fe 238.204†	21.2	167.9	ug/L	20.77	167.9	ug/L	20.77 1	2.37%
K 766.490†	2717.3	1410	ug/L	21.5	1410	ug/L	21.5	1.52%
Mg 285.213†	71826.9	9033	ug/L	182.4	9033	ug/L	182.4	2.02%
Mn 257.610†	85885.2	189.3	ug/L	1.72	189.3	ug/L	1.72	Ծ.91%
Mo 202.031†	6.5	3.322	J .	1.9134	3.322	ug/L		7.60%
Na 589.592†	23907.8	4804	\mathtt{ug}/\mathtt{L}	105.1	4804	ug/L	105.1	2.19%
Ni 231.604†	66.3	6.065	${\tt ug/L}$	2.2793	6.065	ug/L	2.2793 3	7.58%
Pb 220.353†	-7.2	-4.301	ug/L	3.8448	-4.301	ug/L		9.40%
Sb 206.836†	3.8	0.9074	J .	7.93205	0.9074	ug/L	7.93205 87	4.20%
Se 196.026†	4.2	8.854		38.0509	8.854	J .	38.0509 429	9.75%
SiO2 251.603†	94491.0	9303	ug/L	104.5	9303	ug/L	104.5	l.12%
Sr 421.552†	2937639.8	749.9		8.23	749.9		8.23	1.10%
Ti 334.940†	571.5	1.334	ug/L	0.2224	1.334	ug/L	0.2224 10	5.67%
Tl 190.801†	1.1	-3.409	ug/L	7.9091	-3.409	ug/L	7.9091 232	2.00%
V 290.880†	179.2	-0.139	•	0.2304	-0.139	ug/L	0.2304 165	5.38%
Zn 206.200†	1773.0	172.4	ug/L	1.51	172.4	ug/L	1.51	3.88%

Sequence No.: 24

Sample ID: C131107-23 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

All

Autosampler Location: 41
Date Collected: 12/10/2013 3:33:47 PM

Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: C131107-23 @10X

Analyte Back Pressure

194.0 kPa

Flow 0.80 L/min

Mean Data: C131107-23 @10X									
	Mean Corrected		Calib			Sample			
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.		
Sc Axial	3840800.7	98.93		1.150				1.16%	
Sc Radial	417936.4	98.97		0.557				0.56%	
Ag 328.068†	-154.4	0.7800	J .	0.27879	7.800		2.7879	35.74%	
Al 396.153†	19605.9		\mathtt{ug}/\mathtt{L}	26.8	37100	J .	268.5	0.72%	
As 193.696†	2.1	12.27	_	7.240	122.7	-	72.40	59.00%	
Ba 233.527†	3437.9	92.09	${\tt ug/L}$	0.856	920.9	ug/L	8.56	0.93%	
Be 313.107†	1434.5	0.7914	J .	0.02069	7.914	-	0.2069	2.61%	
В 249.677†	-179.1	-7.912	${\tt ug/L}$	1.3240	-79.12	ug/L	13.240	16.73%	
Ca 317.933†	458194.5	55280	${\tt ug/L}$	745.8	552800	ug/L	7457.5	1.35%	
Cd 214.440†	16.9	0.6561	${\tt ug/L}$	0.21512	6.561	ug/L	2.1512	32.79%	
Co 228.616†	50.5	3.186	${\tt ug/L}$	0.1978	31.86	ug/L	1.978	6.21%	
Cr 267.716†	112.3	5.948	${\tt ug/L}$	0.2009	59.48	ug/L	2.009	3.38%	
Cu 324.752†	7193.9	34.45	${\tt ug/L}$	0.934	344.5	ug/L	9.34	2.71%	
Fe 238.204†	953.6	7942	ug/L	154.3	79420	ug/L	1543.1	1.94%	
к 766.490†	5920.1	3117	${\tt ug/L}$	44.6	31170	ug/L	445.6	1.43%	
Mg 285.213†	94624.0	11900	ug/L	159.3	119000	ug/L	1592.6	1.34%	
Mn 257.610†	106866.9	235.5	ug/L	2.29	2355	ug/L	22.9	0.97%	
Mo 202.031†	7.2	3.268	ug/L	0.6439	32.68	ug/L	6.439	19.70%	
Na 589.592†	31701.1	6369	ug/L	76.3	63690	ug/L	763.0	1.20%	
Ni 231.604†	99.3	8.160	ug/L	0.7771	81.60	ug/L	7.771	9.52%	
Pb 220.353†	69.7	36.60	ug/L	1.487	366.0	ug/·L	14.87	4.06%	
Sb 206.836†	-0.1	-6.562	ug/L	6.3285	-65.62	ug/L	63.285	96.44%	
Se 196.026†	4.9	12.44	ug/L	1.678	124.4	ug/L	16.78	13.48%	
SiO2 251.603†	172032.5	16940	ug/L	25.2	169400	ug/L	252.1	0.15%	
Sr 421.552†	3565051.6	909.7	ug/L	7.21	9097	ug/L	72.1	0.79%	
Ti 334.940†	25580.1	59.71	ug/L	1.339	597.1	ug/L	13.39	2.24%	
Tl 190.801†	4.8	-0.449	ug/L	3.5382	-4.486	ug/L	35.3820	788.68%	
V 290.880†	870.9	7.660	ug/L	0.3579	76.60	ug/L	3.579	4.67%	
Zn 206.200†	1426.0	137.4		1.83	1374	ug/L	18.3	1.33%	

Sequence No.: 25 Sample ID: C131107-26 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Autosampler Location: 42
Date Collected: 12/10/2013 3:36:59 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: C131107-26 @10X

Analyte Back Pressure Flow

All 194.0 kPa

0.80 L/min

Mean Data: C13110	7-26 @10X							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	. RSD
Sc Axial	3902451.2	100.5	૪	0.97				0.96%
Sc Radial	419146.2	99.26	8	1.830				1.84%
Ag 328.068†	-4.8	1.897	ug/L	0.3518	18.97	ug/L	3.518	18.55%
Al 396.153†	57868.5	10960	ug/L	29.2	109600	ug/L	292.1	0.27%
As 193.696†	9.9	46.82	ug/L	8.734	468.2	ug/L	87.34	18.65%
Ba 233.527†	4005.9	107.9	ug/L	0.27	1079	ug/L	2.7	0.25%
Be 313.107†	2797.1	1.725	ug/L	0.0405	17.25	ug/L	0.405	2.35%
в 249.677†	15.8	0.6988	ug/L	0.79850	6.988	ug/L	7.9850	114.26%
Ca 317.933†	222738.2	26870	ug/L	64.1	268700	ug/L	640.5	0.24%
Cd 214.440†	93.6	3.505	ug/L	0.2297	35.05	ug/L	2.297	6.55%
Co 228.616†	149.6	8.883	ug/L	0.2751	88.83	ug/L	2.751	3.10%
Cr 267.716†	538,9	24.29	ug/L	0.056	242.9	J .	0.56	0.23%
Cu 324.752†	15542.6	74.49	ug/L	0.218	744.9	ug/L	2.18	0.29%
Fe 238.204†	2645.2	22050		388.9	220500	J .	3889.3	1.76%
к 766.490†	6815.4		ug/L	16.1	36320		161.2	0.44%
Mg 285.213†	91082.1	11460	${\tt ug/L}$	26.0	114600		259.6	0.23%
Mn 257.610†	468932.6	1035		3.4	10350	_	33.6	0.32%
Mo 202.031†	11.0	4.344	${ m ug/L}$	0.2393	43.44	J .	2.393	5.51%
Na 589.592†	17631.1		${\tt ug/L}$	10.2	35330	ug/L	102.1	0.29%
Ni 231.604†	228.1	17.70		0.842	177.0	J .	8.42	4.76%
Pb 220.353†	418.1	222.7		3.94		ug/L	39.4	1.77%
Sb 206.836†	3.3	-1.481	999 · •	3.6596	-14.81	J .		247.11%
Se 196.026†	-0.2	0.2976		4.02214	2.976	J .	40.2214	
SiO2 251.603†	199450.2	19650		131.0	196500	J .	1309.6	0.67%
Sr 421.552†	1688504.2	429.7		2.17	4297		21.7	0.50%
Ti 334.940†	106870.2	249.5	J .	2.25		ug/L	22.5	0.90%
Tl 190.801†	10.3	6.382	_	5.7729	63.82		57.729	90.45%
V 290.880†	2361.9	26.73	_	0.452	267.3	-	4.52	1.69%
Zn 206.200†	6494.1	634.1	${\tt ug/L}$	4.02	6341	ug/L	40.2	0.63%

Sample Prep Vol:

Sequence No.: 26 Sample ID: C131107-29 @10X Analyst: S.VanOvermeiren

Initial Sample Wt: Dilution: 10X

Zn 206.200†

Autosampler Location: 43 Date Collected: 12/10/2013 3:40:05 PM Data Type: Original Initial Sample Vol:

Nebulizer Parameters: C131107-29 @10X

 Analyte
 Back
 Pressure
 Flow

 All
 195.0
 kPa
 0.80

195.0 kPa 0.80 L/min

Mean Data: C131107-29 @10X Calib | Mean Corrected | Calib | Std.Dev. | Conc. Units | Std.Dev. | RSD | 0.776 | 0.788 | 146593.5 | 98.66 | \$ 2.023 | 2.058 | 2.058 | 2.058 | 2.06 | 2.058 | 2.058 | 2.06 | 2.058 | 2.06 | 2.058 | 2.06 | 2.058 | 2.06 | 2.058 | 2.06 | 2.058 | 2.06 | 2.058 | 2.06 | 2.06 | 2.058 | 2.06 | 2. Mean Corrected Sample Intensity Conc. Units Std.Dev. Conc. Units Analyte Std.Dev. RSD Sc Axial Sc Radial Ag 328.068t Al 396.153† As 193.696† Ba 233.527† Be 313.107† B 249.677† Ca 317.933† Cd 214.440† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.204† K 766.490† Mg 285.213† Mn 257.610† Mo 202.031† Na 589.592† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† SiO2 251.603† Sr 421.552† Ti 334.940† Tl 190.801† V 290.880†

Sequence No.: 27

Sample ID: C131107-31 @10X Analyst: S.VanOvermeiren Initial Sample Wt:

Dilution: 10X

Autosampler Location: 44

Date Collected: 12/10/2013 3:43:09 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: C131107-31 @10X

Analyte Back Pressure

A11 195.0 kPa Flow 0.80 L/min

Mean Data: C131107								
	Mean Corrected		Calib			Sample		
Analyte	${ t Intensity}$		Units	Std.Dev.	Conc.	Units	Std.Dev	
Sc Axial	3873488.0	99.77		1.305				1.31%
Sc Radial	422303.7	100.0		2.39				2.39%
Ag 328.068†	-62.5	0.2994	_	0.72194	2.994			241.14%
Al 396.153†	8176.3		ug/L	52.1	15470		520.7	
As 193.696†	-2.6	-3.912	${\tt ug/L}$	5.0784	-39.12	ug/L	50.784	129.81%
Ba 233.527†	1353.7	36.22	${\tt ug/L}$	0.562	362.2	ug/L	5.62	1.55%
Be 313.107†	71.7	-0.0162	${\tt ug/L}$	0.05103	-0.1621	ug/L	0.51027	314.81%
В 249.677†	-129.8	-5.733	${\tt ug/L}$	1.0085	-57.33	ug/L	10.085	17.59%
Ca 317.933†	205665.0	24810	${\tt ug/L}$	582.8	248100	ug/L	5828.4	2.35%
Cd 214.440†	44.4	1.731	${\tt ug/L}$	0.1996	17.31	ug/L	1.996	11.53%
Co 228.616†	10.4	0.6963	ug/L	0.57070	6.963	ug/L	5.7070	81.97%
Cr 267.716†	31.2	1.751	ug/L	0.0702	17.51	ug/L	0.702	4.01%
Cu 324.752†	4080.6	19.05	ug/L	0.812	190.5	ug/L	8.12	4.26%
Fe 238.204†	252.4	2100	ug/L	17.0	21000	ug/L	170.4	0.81%
К 766.490†	1814.4	948.7	ug/L	24.61	9487	ug/L	246.1	2.59%
Mg 285.213†	21743.9	2734	ug/L	68.5	27340		685.1	2.51%
Mn 257.610†	68360.7	150.8	ug/L	2.43	1508	ug/L	24.3	1.61%
Mo 202.031†	10.0	5.556	ug/L	0.2474	55.56	ug/L	2.474	4.45%
Na 589.592†	7058.4	1414	ug/L	28.0	14140	ug/L	280.3	1.98%
Ni 231.604†	34.2	2.949	ug/L	1.9763	29.49	ug/L	19.763	67.01%
Pb 220.353†	66.3	34.50	ug/L	2.495	345.0	ug/L	24.95	7.23%
Sb 206.836†	-0.1	-2.770	ug/L	3.7980	-27.70	ug/L	37.980	137.09%
Se 196.026†	3.0	7.664	ug/L	11.6573	76.64	ug/L	116.573	152.10%
SiO2 251.603†	65347.6	6434	ug/L	98.2	64340	ug/L	981.6	1.53%
Sr 421.552†	1625941.4	415.0	ug/L	2.71	4150	ug/L	27.1	0.65%
Ti 334.940†	6687.0	15.61	ug/L	0.481	156.1	ug/L	4.81	3.08%
Tl 190.801†	6.7	5.761	ug/L	6.1652	57.61		61.652	107.02%
V 290.880†	308.8	2.545		0.8291	25.45	ug/L	8.291	32.57%
Zn 206.200†	692.0	66.88	ug/L	0.527	668.8	ug/L	5.27	0.79%

Sequence No.: 28 Sample ID: Blank

Analyst: S.VanOvermeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 45

Date Collected: 12/10/2013 3:46:13 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: Blank

Back Pressure Flow Analyte All

194.0 kPa

0.80 L/min

Mean Data: Blank							
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Sc Axial	3830535.0	98.66	8	1.067			1.08%
Sc Radial	413561.2	97.94	8	0.698			0.71%
Ag 328.068†	-121.1	-0.9641	ug/L	0.34349	-0.9641	ug/L	0.34349 35.63%
Al 396.153†	42.9	8.135	ug/L	15.4373	8.135	ug/L	15.4373 189.76%
As 193.696†	2.6	6.001	ug/L	1.8865	6.001	ug/L	1.8865 31.43%
Ba 233.527†	5.6	0.1562	ug/L	0.12850	0.1562	${\tt ug/L}$	0.12850 82.28%
Be 313.107†	-308.2	-0.2019	ug/L	0.01782	-0.2019	${\tt ug/L}$	0.01782 8.83%
В 249.677†	-98.1	-4.334	ug/L	1.1836	-4.334	ug/L	1.1836 27.31%
Ca 317.933†	6.2	0.7730	ug/L	0.73633	0.7730	ug/L	0.73633 95.25%
Cd 214.440†	-6.8	-0.2662	ug/L	0.20347	-0.2662	ug/L	0.20347 76.44%
Co 228.616†	4.1	0.2566	ug/L	0.19976	0.2566	ug/L	0.19976 77.85%
Cr 267.716†	2.6	0.1178	ug/L	0.17917	0.1178	ug/L	0.17917 152.03%
Cu 324.752†	136.8	0.6169	ug/L	0.43864	0.6169	ug/L	0.43864 71.10%
Fe 238.204†	-0.1	-1.037	ug/L	21.5557	-1.037	ug/L	21.5557 >999.9%
K 766.490†	-18.4	-10.10	ug/L	52.005	-10.10	ug/L	52.005 514.91%
Mg 285.213†	-3.8	-0.4691	ug/L	1.43395	-0.4691	ug/L	1.43395 305.69%
Mn 257.610†	-18.3	-0.0393	${\tt ug/L}$	0.06371	-0.0393	ug/L	0.06371 161.92%
Mo 202.031†	-0.6	-0.3584	ug/L	1.41185	-0.3584	ug/L	1.41185 393.98%
Na 589.592†	-5.0	-0.9107	ug/L	10.29219	-0.9107	ug/L	10.29219 >999.9%
Ni 231.604†	16.7	1.511	ug/L	1.6753	1.511	ug/L	1.6753 110.85%
Pb 220.353†	-1.1	-0.5820	ug/L	0.44752	-0.5820	ug/L	0.44752 76.90%
Sb 206.836†	3.7	5.088	ug/L	8.4584	5.088	ug/L	8.4584 166.25%
Se 196.026†	-9.8	-27.37		2.754	-27.37	ug/L	2.754 10.06%
SiO2 251.603†	108.2	10.69	ug/L	2.890	10.69	ug/L	2.890 27.03%
Sr 421.552†	1381.6	0.353	ug/L	0.1152	0.353	ug/L	0.1152 32.65%
Ti 334.940†	22.2	0.052	ug/L	0.0197	0.052	ug/L	0.0197 37.94%
Tl 190.801†	8.3	10.59	ug/L	9.763	10.59	ug/L	9.763 92.17%
V 290.880†	139.5	1.829	ug/L	0.7590	1.829	ug/L	0.7590 41.50%
Zn 206.200†	-4.9	-0.471	ug/L	0.7090	-0.471	ug/L	0.7090 150.58%

Sequence No.: 29 Sample ID: SEQ-CCV Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 3
Date Collected: 12/10/2013 3:49:16 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-CCV

AnalyteBack Pressure

Flow

194.0 kPa

0.80 L/min

Mean Data: SEQ-CCV								
	Mean Corrected		Calib		_	Sample		
Analyte	Intensity			Std.Dev.	Conc.	Units	Std.Dev.	RSD
Sc Axial	3868175.4	99.63		0.056				0.06%
Sc Radial	417037.1	98.76		1.599	0.53.4	/-	0 61	1.62%
Ag 328.068†		253.4		2.61	253.4	ug/L	2.61	1.03%
	limits for Ag 328						404.4	0.010
Al 396.153†	65913.3	12490		101.1	12490	ug/L	101.1	0.81%
	limits for Al 396							
As 193.696†		2574	-	17.7	2574	ug/L	17.7	0.69%
-	limits for As 193							
Ba 233.527†	18649.0			1.93	504.7	ug/L	1.93	0.38%
	limits for Ba 233							
Be 313.107†		508.1		1.17	508.1	ug/L	1.17	0.23%
QC value within	limits for Be 313	3.107	Recovery =	101.62%				
В 249.677†		5088		53.9	5088	ug/L	53.9	1.06%
QC value within	limits for B 249.	677 R	ecovery =	101.76%				
Ca 317.933†	102041.7	12250	ug/L	63.6	12250	ug/L	63.6	0.52%
QC value within	limits for Ca 317	.933	Recovery =	98.02%				
Cd 214.440†	13072.5	510.2	ug/L	3.89	510.2	ug/L	3.89	0.76%
QC value within	limits for Cd 214	.440	Recovery =	102.04%				
Co 228.616†	8179.7			6.01	510.1	ug/L	6.01	1.18%
OC value within	limits for Co 228	.616	Recovery =	102.03%				
	55953.4			17.4	2546	uq/L	17.4	0.69%
	limits for Cr 267			101.85%		3.		
Cu 324.752†	219394.7	996.2	na/L	7.29	996.2	na/L	7.29	0.73%
	limits for Cu 324	. 752	Recovery =		33012	~g, _		
		11840		35.9	11840	1107/T.	35.9	0.30%
	limits for Fe 238				11040	49/1	33.3	0.500
K 766.490†		24460			24460	1107/T.	98.4	0.40%
	limits for K 766.				24400	ug/ L	50.1	0.100
Mg 285.213†	99168.4			72.5	12460	110 /T.	72.5	0.58%
	limits for Mg 285				12400	ug/ Li	12.5	0.500
					1012	110 /T	1.6	0.16%
	458974.6			1.6	1013	ug/L	1.0	0.10%
	limits for Mn 257				F00 7	/T	1 27	0 070
Mo 202.031†	871.6	500.7		1.37	500.7	ug/L	1.37	0.27%
	limits for Mo 202				10050	/-	0.0 7	0 740
Na 589.592†		12250		90.7	12250	ug/L	90.7	0.74%
	limits for Na 589	.592 I	Recovery =		0.5.5.5	/	11.6	0 570
Ni 231.604†		2555		14.6	2555	ug/L	14.6	0.57%
	limits for Ni 231							
Pb 220.353†	4821.3	2523		3.0	2523	ug/L	3.0	0.12%
	limits for Pb 220							
	1865.7			4.7	2499	ug/L	4.7	0.19%
QC value within	limits for Sb 206							
		2555		1.4	2555	ug/L	1.4	0.06%
QC value within	limits for Se 196	.026 F	Recovery =	102.19%				
SiO2 251.603†	103351.7	10170		82.0	10170	ug/L	82.0	0.81%
QC value within	limits for SiO2 2	51.603	Recovery	= 101.71%				
Sr 421.552†	1995105.4	508.4	ug/L	0.80	508.4	ug/L	0.80	0.16%
QC value within	limits for Sr 421	.552 F	Recovery =	101.69%				
ri 334.940†	216800.2	506.1	ug/L	4.07	506.1	ug/L	4.07	0.80%
	limits for Ti 334			101.21%				
				17.3	2540	1107 / T.	17.3	0.68%
	1995.5	2540.	ug/Li	11.5		ug/ L	11.5	
rl 190.801†						ug/ II	17.3	
rl 190.801†	1995.5 limits for Tl 190 77683.4		Recovery =		1015	<u> </u>	8.8	0.87%

Method: ESAT_2013_1.0

Page 32

Date: 12/10/2013 3:51:43 PM

Zn 206.200† 26238.5 2565 ug/L 20.6 QC value within limits for Zn 206.200 Recovery = 102.58% All analyte(s) passed QC.

2565 ug/L

20.6 0.80%

Sequence No.: 30 Sample ID: SEQ-CCB Analyst: Initial Sample Wt: Dilution: Autosampler Location: 1
Date Collected: 12/10/2013 3:52:23 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-CCB

AnalyteBack Pressure

Flow

195.0 kPa

0.80 L/min

Mean Data: SEQ-CCB						
7 1 t	Mean Corrected	Calib	ard Deer	G	Sample	Std.Dev. RSD
Analyte Sc Axial Sc Radial Ag 328.068†	3911665 4	100 8 %	0 55	cone.	Units	0.55%
Sc Radial	419812.1	99.42 %	1.009			1.01%
Ag 328.068+	50.2	0.3993 ug/L	0.19767	0.3993	ua/L	0.19767 49.50%
QC value within	limits for Aq 3	328.068 Recovery	= Not calculate	ed	~g, _	0.237.07
	112.6		2.311	21.24	ug/L	2.311 10.88%
		396.153 Recovery	= Not calculate	ed		
			7.4278	9.031	ug/L	7.4278 82.25%
		93.696 Recovery				
		0.1220 ug/L			ug/L	0.13314 109.15%
		233.527 Recovery				
Be 313.107†		0.1153 ug/L	0.03637	0.1153	ug/L	0.03637 31.53%
		313.107 Recovery	= Not calculate	ed 10 00	/ =	1 620 12 650
B 249.677†			.1.630	12.89	ug/L	1.630 12.65%
		9.677 Recovery = 2.215 ug/L			110 /T	1.1407 51.50%
		2.215 ug/L 17.933 Recovery:			ug/L	1.140/ 51.50%
Cd 214.440†		-0.0140 ug/L			ua/I.	0.12083 863.48%
		14.440 Recovery :			ид/п	0.12003 003.400
		0.3721 ug/L			ua/L	0.28250 75.92%
OC value within	limits for Co 2	28.616 Recovery	= Not calculate	ed	wg/ <u>_</u>	0.20200 /0.320
Cr 267.716†		0.3240 ug/L		0.3240	ug/L	0.26373 81.41%
QC value within	limits for Cr 2	67.716 Recovery	= Not calculate	ed		
	-67.2	-0.2997 ug/L	0.41438	-0.2997	ug/L	0.41438 138.27%
QC value within	limits for Cu 3	24.752 Recovery	Not calculate			
Fe 238.204†	4.2	34.89 ug/L	29.489	34.89	ug/L	29.489 84.52%
		38.204 Recovery				
· · · · · · · · · · · · · · · · · · ·					ug/L	50.59 31.06%
		6.490 Recovery =			· /=	0.04650.06.600
		0.8762 ug/L 85.213 Recovery =			ug/L	0.84658 96.62%
Mn 257.610†	58.6	0.1285 ug/L	0.04229		ug /T	0.04229 32.90%
		57.610 Recovery =		رە _ك ىدە	ug/ Li	0.04225 32.50%
			2.4514		ug/L	2.4514 114.66%
		02.031 Recovery =			~g, _	
		-2.435 ug/L		-2.435	ug/L	8.2300 337.93%
QC value within	limits for Na 5	89.592 Recovery =	Not calculate	đ '	_	•
Ni 231.604†	-3.8				ug/L	1.00205 288.50%
		31.604 Recovery =				
		4.090 ug/L			ug/L	1.8454 45.12%
		20.353 Recovery =			. /-	2 550 15 500
Sb 206.836†		22.60 ug/L	3.570	22.60	ug/L	3.570 15.79%
		06.836 Recovery = -21.68 ug/L			/T	18.092 83.44%
OC value within	limits for Se 1	96.026 Recovery =	TO.U94 Not calculate	-21.00 a	ug/L	18.092 83.44%
		4.277 ug/L			ug/L	3.4314 80.23%
		251.603 Recovery			ug/L	3.1311 00.230
Sr 421.552†		-0.063 ug/L		-0.063	ug/L	0.1649 262.50%
		21.552 Recovery =			-	
Ti 334.940†	135.1	0.315 ug/L	0.0826	0.315	ug/L	0.0826 26.20%
		34.940 Recovery =				
Tl 190.801†		7.191 ug/L	9.8330		ug/L	9.8330 136.75%
		90.801 Recovery =	Not calculate		/	0 5055 00 550
V 290.880†		-0.558 ug/L	0.5057		ug/L	0.5057 90.56%
QC value within	limits for V 29	0.880 Recovery =	NOT Calculated			

Date: 12/10/2013 3:54:45 PM

Zn 206.200† 6.3 0.604 ug/L 0.7092 0.604 ug/L QC value within limits for Zn 206.200 Recovery = Not calculated All analyte(s) passed QC.

0.7092 117.41%

Perkin Elmer DRC-II ICP-MS

Project(s): Work Order(s):	Ri10 Arge C131107	TDF: 4-025	Date: 12 / 10 / 2013 Analyst: 5. Van Overnerben							
Batch Preparation Information										
Digest / P	rep.	Matrix	Batch ID							
TR/ Total	Diss.	Water / Soil / Other	1312040/ 1312035							
<u>Data Storage</u>										
Data File: X:/M	etals Data Files/	A-025- 13/2040- D.	PSIA 1210/3							

Standard Information									
Calibration Std. #1: 3020158	Calibration Std. #2: 3	4 .							
Prepped By: 5v Date: 09/13/13	Prepped By:	Date: (1/22/13							
Calibration Std. #3: 3020160	SICV .	LIMS: 3020164							
Prepped By: Sv Date: 10/30/13	Prepped By: 5	Date: <i>09\/8/\</i> 13							
CRDL: 1:100 of 3020161 LIMS: 3020162	JCN/CCV	LIMS: 3020402							
Prepped By: SV Date: 12/10/13	Prepped By: SV	Date: ///13/13							
ICSA LIMS: 3020165	ICSAB LIMS: 3020166								

Spike Information								
<u>Dissolved Spikes</u>	Total / Total Rec. Spikes							
Sample ID: <u>C13/107 - o4</u>	Sample ID: <u>C131107-02, -05</u>							
Sample ID: <u>. C131/07 - 07</u>	Sample Vol:50mL							
Sample Vol: 10 mL	PSS2007-220: <u>500</u> uL WW-LFS1 Exp: 02-1-2014							
Spike	PSS2007-221:500uL							
LIMS ID: 3020403 100 uL	WW-LFS2 Exp: 02-1-2014							

Tune criteria passed?	(Yés) / No		
Comments / Maintenance	New pump tubing?	Y /(N)	Cleaned cones? Y/N
		Repo	ortable Analytes
	(Ag)(A	Ba Be C	cd Co Co Cu Mn (Mo Ni)Pb (Sb) Se
			TO (V) Zn (V) (F)
1.			
Sequence ID: 1312041	312042		
	s/13 r./		
Lims Entry (Date / Init):			

TLF-06	6.03		SOP: QAC	2-04.01	Eff. Date: 11/11/2013						
	ESAT Region 8										
			ICP-MS Data	_							
			Analyst / Bench								
LIMS:	C131107			TDF:	A-025						
Matrix:	water			Analysis: Dissolved / Tot Dec Meta's							
	Method / Instrun	nent QC Pa	rameters	Analytical Batch / Sample Parameters							
☐ Yes ☐ No	ICV 90-110%	Yes No	SCV 90-110%	☐ Yes ☑ No	Mth. Blk. (MB) / Prep. B	BLK (PB) ≤ ± PQL					
☐ Yes ☑ No	ICB ≤ ± PQL	☐ Yes ☑ No	CRDL 70-130%	Yes Do	Blk. Spike (BS) 85-115	% / LCS/SRM In Control					
Yes No	ICSA Spiked Analy	tes 80-120%	%	Yes No	Laboratory Duplicate (I	DUP) Analyzed					
Yes No	ICSA Non-Spiked A	nalytes ≤ ±	PQL	Yes No	Serial Dilution (SRD) A	nalyzed					
Yes No	ICSAB Spiked Anal	-	0%		MS Analyzed Every 10	% of Samples 70-130%					
∐ Yes ⊠ No	CCBs ≤ ± PQL	∐Yes ⊠No	CCVs 90-110%	Yes No	Internal Standards 60-	125%					
^ /	Des	Other d	lata quality issues ide omalv or deficiencv no	ntified t indicated a	Yes No above in the space provided						
Seleni	un servered his	h oh the	o CPL. There o	NOU NO	sclanium de lec	D'UMS. Molyholenm Was					
dekvo	In the Fib, p				B1. The reporting						
was to					=35, Cupper was d						
for bas		he report	<i></i>	opper we	s saised to 2.0 Mg	IL. Thurish recovered					
1 - 2 G- 1	h CCV2. There	were	LIMS Electronic	Data Trai	nofor .						
☑ Yes	T	CI		∑ Yes		1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
☐ No	The instrument data	tile is uploa	ided to the X: drive	☐ No	Instrument data are uplo	aded into the LIMS					
Yes No	All samples and QC	data are pr	esent in LIMS	Yes No	The analyte list for the s	equence is complete					
Analyst:	MH 1X			Date: (2	1/11/13						
		Pe	er Review of Analyt	cal Analys	sis – Level II						
	Method / Instrume		ameters		Analytical Batch / Sam	ole Parameters					
☑ Yes ☐ No	ICV 90-110%	图 Yes	SCV 90-110%	☐ Yes ☑ No	Mth. Blk. (MB) / Prep. Bl	.K (PB) ≤ ± PQL					
☐ Yes ☑ No	ICB ≤ ± PQL	☐ Yes ☑ No	CRDL 70-130%	☐ Yes ☐ No	Blk. Spike (BS) 85-115%	/ LCS/SRM In Control					
Yes No	ICSA Spiked Analyte	s 80-120%		☐ Yes ☐ No	Laboratory Duplicate (Dl	JP) Analyzed					
☑ Yes ☐ No	ICSA Non-Spiked Ar	alytes ≤ ± P	'QL	Yes No	Serial Dilution (SRD) Ana	alyzed					
Yes	ICSAB Spiked Analy		0	⊠ Yes □ No	MS Analyzed Every 10%	of Samples 70-130%					
Yes '	CCBs ≤ ± PQL	∏ Yes INo	CCVs 90-110%	☑ Yes ☐ No	Internal Standards 60-12	25%					
			ata quality issues ider		☑ Yes ☐ No						
	Desc	4		indicated al	bove in the space provided						
	Jee an	abyst ,	otes above.		*						
			LIMS Electronic	Data Tran	sfer						
∑ Yes ☐ No	The instrument data	file is upload		¥Yes □ No	Instrument data are uploa	aded into the LIMS					
Yes No	All samples and QC	data are pre	sent in LIMS	✓ Yes □ No	The analyte list for the se	equence is complete					
Peer Rev	ilewer:			Date:	1/2						

PREPARATION BENCH SHEET

1312040

Matrix: Water

Date Prepared: 12/09/13 13:26 By: SV

TechLaw, Inc. - ESAT Region 8

Prepared using: METALS - No Lab Prep Reqd

Printed: 12/9/2013 1:27:33PM

Lab Number	Analysis	EPA Tag ID	Initial (mL)	Final (mL)	Spike1 ID	ul Spike1	Spike2 ID	ul Spike2	Source ID	QC Code	Extraction Comments
C131107-01 A	ICPMS Diss. Metals	8-A	50	50						CHV-101U	(2)
C131107-04 A	ICPMS Diss. Metals	8-A	50	50						. DR-1	
C131107-07 A	ICPMS Diss. Metals	8-A	50	50						DR-2	
C131107-09 A	ICPMS Diss. Metals	8-A	50	50						DR-3	Tol
C131107-12 A	ICPMS Diss. Metals	8-A	50	50						DR-4	1
C131107-14 A	ICPMS Diss. Metals	8-A	50	50					·	DR-5	
C131107-16 A	ICPMS Diss. Metals	8-A	50	50						DR-6	J.
C131107-19 A	ICPMS Diss. Metals	8-A	50	50						DR-7	
C131107-22 A	ICPMS Diss. Metals	8-A	50	50						MW-109S	1.04
C131107-25 A	ICPMS Diss. Metals	8-A	50	50						MW-110	
C131107-28 A	ICPMS Diss. Metals	8-A	50	50						MW-2D	
C131107-30 A	ICPMS Diss. Metals	8-A	50	50						MW-3D	J ·
1312040-BLK1	QC		50	50						Blank	
1312040-BS1	QC		10	10	3020403	100				LCS	
1312040-DUP1	QC		50	50					C131107-04	Duplicate	
1312040-MS1	QC		10	10	3020403	100			C131107-04	Matrix Spike	
1312040-MS2	QC		10	10	3020403	100			C131107-07	Matrix Spike	

Preparation Reviewed By

Date

Page 1 of 1

PREPARATION BENCH SHEET

1312035

Matrix: Water

TechLaw, Inc. - ESAT Region 8

Printed: 12/9/2013 8:11:36AM

Date Prepared: 12/09/13 08:09 By: SV

Prepared using: METALS - 200.2 - TR Metals

Lab Number	Analysis	EPA Tag ID	Initial (mL)	Final (mL)	Spike1 ID	ul Spike1	Spike2 ID	ul Spike2	Source ID	QC Code	Extraction Comments
C131107-02 A	ICPMS Tot. Rec. Metals	8-B	50	50					1	CHV-101U	104
C131107-05 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-1	
C131107-08 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-2	
C131107-10 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-3	104
C131107-13 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-4	
C131107-15 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-5	
C131107-17 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-6	V
C131107-20 A	ICPMS Tot. Rec. Metals	8-B	50	50						DR-7	Ó
C131107-23 A	ICPMS Tot. Rec. Metals	8-B	50	50						MW-109S	16
C131107-26 A	ICPMS Tot. Rec. Metals	8-B	50	50						MW-110	1
C131107-29 A	ICPMS Tot. Rec. Metals	8-B	50	50						MW-2D	
C131107-31 A	ICPMS Tot. Rec. Metals	8-B	50	50						MW-3D	V
C131107-02 A	ICPOE Tot. Rec. Metals	8-B	- 50	50						CHV-101U	·
C131107-05 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-1	
C131107-08 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-2	
C131107-10 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-3	
C131107-13 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-4	·
C131107-15 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-5	
C131107-17 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-6	
C131107-20 A	ICPOE Tot. Rec. Metals	8-B	50	50						DR-7	·
C131107-23 A	ICPOE Tot. Rec. Metals	8-B	50	50						MW-109S	
C131107-26 A	ICPOE Tot. Rec. Metals	8-B	- 50	50						MW-110	
C131107-29 A	ICPOE Tot. Rec. Metals	8-B	50	50						MW-2D	
C131107-31 A	ICPOE Tot. Rec. Metals	8-B	50	50	1		1			MW-3D	

Preparation Reviewed By

Page 1 of 2

PREPARATION BENCH SHEET

1312035

Matrix: Water

TechLaw, Inc. - ESAT Region 8

Printed: 12/9/2013 8:11:36AM

Date Prepared: 12/09/13 08:09 By: SV

Prepared using: METALS - 200.2 - TR Metals

Lab Number	Analysis	EPA Tag ID	Initial (mL)	Final (mL)	Spike1 ID	ul Spike1	Spike2 ID	ul Spike2	Source ID	QC Code	Extraction Comments
1312035-BLK1	QC		50	50						Blank	
1312035-BLK2	QC		50	50						Blank	
1312035-DUP1	QC		50	50					C131107-02	Duplicate	
1312035-DUP2	QC		50	50	-				C131107-02	Duplicate	
1312035-MS1	QC		50	50	3020135	500	3020136	500	C131107-02	Matrix Spike	
1312035-MS2	QC		50	50	3020135	500	3020136	500	C131107-02	Matrix Spike	
1312035-MS3	QC		50	50	3020135	500	3020136	500	C131107-05	Matrix Spike	
1312035-MS4	QC	,	50	50	3020135	500	3020136	500	C131107-05	Matrix Spike	
1312035-SRM1	QC		50	50	3020145	500	3020146	500		Reference	
1312035-SRM2	QC		50	50	3020145	500	3020146	500		Reference	

ANALYSIS SEQUENCE

1312041

V12/10/13

Instrument: IC	PMS-PE D	PRC-II Se	quence Da	te: 12/10/13 00:00		Printed: 12/10/2013 1:56:47PM		
Lab Number	Dilut. Factor	Analysis	STD ID	Sample/Std Name	EPA Tag ID	Source Sple	Comments	
1312041-ICV1		. QC	3091901	Initial Cal Check		. .		
1312041-SCV1		. QC	3020164	Secondary Cal Check		- :		
1312041-ICB1		QC		Initial Cal Blank		-		
1312041-CRL1		QC	3020163	Instrument RL Check				
1312041-IFA1		QC	3020165	Interference Check A		-		
1312041-IFB1		QC	3020166	Interference Check B		-		
1312040-BLK1		QC		Blank		-		
C131107-04 A		ICPMS Diss. Metals		DR-1	8-A			
1312040-DUP1		QC		Duplicate	-	C131107-04		
1312041-SRD1		QC		Serial Dilution		C131107-04		
1312040-BS1		QC		LCS		-		
1312040-MS1		QC .		Matrix Spike		C131107-04		
C131107-07 A		ICPMS Diss. Metals		DR-2	8-A			
1312040-MS2		QC		Matrix Spike		C131107-07		
C131107-01 A		ICPMS Diss. Metals		CHV-101U	8-A	1.		
1312041-CCV1		QC	3020402	Calibration Check				
1312041-CCB1		QC		Calibration Blank		-		
C131107-09 A	, , , , , , , , , , , , , , , , , , , ,	ICPMS Diss. Metals		DR-3	8-A			
C131107-12 A		ICPMS Diss. Metals		DR-4	8-A			
C131107-14 A		ICPMS Diss. Metals		DR-5	8-A			
C131107-16 A		ICPMS Diss. Metals		DR-6	8-A			
C131107-19 A		ICPMS Diss. Metals		DR-7	8-A		·	
C131107-22 A		ICPMS Diss. Metals		MW-109S	8-A			
C131107-25 A		ICPMS Diss. Metals		MW-110	8-A			
C131107-28 A		ICPMS Diss. Metals		MW-2D	8-A			
C131107-30 A		ICPMS Diss. Metals		MW-3D	8-A			
1312041-CCV2		QC	3020402	Calibration Check		-		
1312041-CCB2		QC		Calibration Blank				

ANALYSIS SEQUENCE

1312042

birlidi3

Instrument: ICPMS-PE DRC-II Sequence Date: 12/10/13 00:00 Printed: 12/10/2013 1:59:44PM Dilut. Lab Number **Factor** Analysis STD ID | Sample/Std Name **EPA Tag ID** Source Sple **Comments** 1312042-ICV1 QC 3091901 Initial Cal Check 1312042-SCV1 QC 3020164 Secondary Cal Check 1312042-ICB1 QC Initial Cal Blank 1312042-CRL1 QC 3020163 Instrument RL Check 1312042-IFA1 3020165 QC Interference Check A 1312042-IFB1 3020166 QC Interference Check B 1312042-CCV1 QC 3020402 Calibration Check -1312042-CCB1 QC Calibration Blank 1312042-CCV2 QC 3020402 Calibration Check 1312042-CCB2 Calibration Blank QC 1312035-BLK2 QC Blank CHV-101U C131107-02 ICPMS Tot. Rec. Metals 8-B 1312035-DUP2 C131107-02 OC Duplicate 1312042-SRD1 QC Serial Dilution C131107-02 1312035-SRM2 QC Reference 1312035-MS2 OC Matrix Spike C131107-02 C131107-05 ICPMS Tot. Rec. Metals DR-1 8-B C131107-05 1312035-MS4 QC Matrix Spike C131107-08 ICPMS Tot. Rec. Metals DR-2 8-B 1312042-CCV3 QC 3020402 Calibration Check QC Calibration Blank 1312042-CCB3 C131107-10 DR-3 ICPMS Tot. Rec. Metals 8-B DR-4 C131107-13 ICPMS Tot. Rec. Metals 8-B Α C131107-15 ICPMS Tot. Rec. Metals DR-5 Α 8-B C131107-17 DR-6 ICPMS Tot. Rec. Metals 8-B C131107-20 DR-7 ICPMS Tot. Rec. Metals Α 8-B MW-109S C131107-23 ICPMS Tot. Rec. Metals Α 8-B C131107-26 ICPMS Tot. Rec. Metals MW-110 8-B Α C131107-29 Α ICPMS Tot. Rec. Metals MW-2D 8-B C131107-31 ICPMS Tot. Rec. Metals MW-3D 8-B 1312042-CCV4 QC 3020402 Calibration Check 1312042-CCB4 QC Calibration Blank

Run List

Sample File Name: 1312040_DISSA_121013.sam

burloliz

<u> </u>			· ·	Millions	
AS Loc.	Sample ID	Batch Index	Sample Type	Method	
1	Blank		Blank	esat2010.mth	
2	Standard 1		Standard	esat2010.mth	
3	Standard 2		Standard	esat2010.mth	
4	Standard 3		Standard	esat2010 mth	
6	SEQ-ICV		QC Std	esat2010.mth	
5	SEQ-SCV		QC Std	esat2010.mth	
1	SEQ-ICB		QC Std	esat2010.mth	
26	SEQ-CRL		QC Std	esat2010 mth	
7	SEQ-IFA		QC Std	esat2010.mth	
8	SEQ-IFB		QC Std	esat2010.mth	
27	1312040-BLK1	1	Sample	esat2010.mth	
28	C131107-04	2	Sample	esat2010.mth	
29	1312040-DUP1	3	Duplicate of 2	esat2010.mth	
30	SEQ-SRD1 @5X	4	Dilution - DF:5 of 2	esat2010.mth	
31	1312040-BS1	5	Spike - 3 of 1	esat2010.mth	
32	1312040-MS1	6	Spike - 3 of 2	esat2010.mth	
33	C131107-07	7	Sample	esat2010.mth	
34	1312040-MS2	8	Spike - 3 of 7	esat2010.mth	
35	C131107-01 @10X	9	Sample	esat2010.mth	
36	Blank	10	Sample	esat2010.mth	
6	SEQ-CCV		QC Std	esat2010.mth	
1	SEQ-CCB /		QC Std	esat2010.mth	
37	C131107-09 🖰 🎷	11	Sample	esat2010.mth	
38	C131107-12	12	Sample	esat2010.mth	
39	C131107-14	13	Sample	esat2010.mth	
40	C131107-16	14	Sample	esat2010.mth	
41	C131107-19	15	Sample	esat2010.mth	
42	C131107-22 @ 10×	16	Sample	esat2010.mth	
43	C131107-25	17	Sample	esat2010.mth	
44	C131107-28	18	Sample	esat2010.mth	
45	C131107-30 J	19	Sample	esat2010.mth	
46	Blank	20	Sample	esat2010.mth	
6	SEQ-CCV \		QC Std	esat2010.mth	
1	SEQ-CCB 2		QC Std	esat2010.mth	

Run List

Sample File Name: 1312035_TRA_121013.sam

Sv 12/10/13

AS Loc. Sample ID Batch Index Sample Type Method 27 1312035-BLK2 @5X 1 Sample esat2010.mth 28 C131107-02 @10X 2 Sample esat2010.mth 29 1312035-DUP2 @10X 3 Duplicate of 2 esat2010.mth 30 SEQ-SRD1 @50X 4 Dilution - DF: 5 of 2 esat2010.mth 31 1312035-SRM2 @20X 5 Spike - 1 of 1 esat2010.mth 32 1312035-MSQ @10X 6 Spike - 2 of 2 esat2010.mth 33 C131107-05 @5X 7 Sample esat2010.mth 34 1312035-MS4 @5X 8 Spike - 2 of 7 esat2010.mth 35 C131107-08 @5X 9 Sample esat2010.mth 36 Blank 10 Sample esat2010.mth 4 SEQ-CCV 3 QC Std esat2010.mth 5 SEQ-CCB 3 QC Std esat2010.mth 6 SEQ-CCB 3 QC Std esat2010.mth 38 C1					NOTE TO
28 C131107-02 @10X	ł	Sample ID	1		Method
29 1312035-DUP2 @10X	27	1312035-BLK2 @5X	1	Sample	esat2010.mth
30 SEQ-SRD1 @50X 4 Dilution - DF:5 of 2 esat2010.mth 31 1312035-SRM2 @20X 5 Spike - 1 of 1 esat2010.mth 32 1312035-MS2 @10X 6 Spike - 2 of 2 esat2010.mth 33 C131107-05 @5X 7 Sample esat2010.mth 34 1312035-MS4 @5X 8 Spike - 2 of 7 esat2010.mth 35 C131107-08 @5X 9 Sample esat2010.mth 36 Blank 10 Sample esat2010.mth 37 C131107-10 @10X 11 Sample esat2010.mth 38 C131107-10 @10X 12 Sample esat2010.mth 39 C131107-13 @10X 12 Sample esat2010.mth 40 C131107-17 @10X 14 Sample esat2010.mth 41 C131107-20 @5X 15 Sample esat2010.mth 42 C131107-23 @10X 16 Sample esat2010.mth 43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV	28	C131107-02 @10X	2	Sample	esat2010.mth
SEQ-SRD1 @50X	29	1312035-DUP2 @10X	3	Duplicate of 2	esat2010.mth
32 1312035-MS2 @10X 6 Spike - 2 of 2 esat2010.mth 33 C131107-05 @5X 7 Sample esat2010.mth 34 1312035-MS4 @5X 8 Spike - 2 of 7 esat2010.mth 35 C131107-08 @5X 9 Sample esat2010.mth 36 Blank 10 Sample esat2010.mth 40 SEQ-CCV 3 QC Std esat2010.mth 41 SEQ-CCB 3 QC Std esat2010.mth 42 C131107-17 @10X 14 Sample esat2010.mth 43 C131107-20 @5X 15 Sample esat2010.mth 44 C131107-29 @10X 16 Sample esat2010.mth 45 C131107-29 @10X 17 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 58 SEQ-CCV 18 Sample esat2010.mth 59 Sample esat2010.mth 60 SEQ-CCV 19 Sample esat2010.mth 61 Sample esat2010.mth 62 Sample esat2010.mth 63 Sample esat2010.mth 64 Sample esat2010.mth 65 Sample esat2010.mth 66 SEQ-CCV 19 Sample esat2010.mth 70 Sample esat2010.mth 71 Sample esat2010.mth 72 Sample esat2010.mth 73 Sample esat2010.mth 74 Sample esat2010.mth 75 Sample esat2010.mth 76 Sample esat2010.mth 77 Sample esat2010.mth 78 Sample esat2010.mth 79 Sample esat2010.mth 80 Sample esat2010.mth 81 Sample esat2010.mth 82 Sample esat2010.mth 83 Sample esat2010.mth 84 Sample esat2010.mth 85 Sample esat2010.mth 86 SEQ-CCV 9 Sample esat2010.mth	30	SEQ-SRD1 @50X	4		esat2010.mth
33 C131107-05 @5X 7 Sample esat2010.mth 34 1312035-MS4 @5X 8 Spike - 2 of 7 esat2010.mth 35 C131107-08 @5X 9 Sample esat2010.mth 36 Blank 10 Sample esat2010.mth 6 SEQ-CCV 3 QC Std esat2010.mth 1 SEQ-CCB 3 QC Std esat2010.mth 37 C131107-10 @10X 11 Sample esat2010.mth 38 C131107-13 @10X 12 Sample esat2010.mth 39 C131107-15 @10X 13 Sample esat2010.mth 40 C131107-17 @10X 14 Sample esat2010.mth 40 C131107-20 @5X 15 Sample esat2010.mth 41 C131107-23 @10X 16 Sample esat2010.mth 42 C131107-29 @10X 17 Sample esat2010.mth 44 C131107-31 @10X 19 Sample esat2010.mth 45 C131107-31 @10X	31	1312035-SRM2 @20X	5	Spike - 1 of 1	esat2010.mth
34	32	1312035-MS2 @10X	6	Spike - 2 of 2	esat2010.mth
35 C131107-08 @5X 9 Sample esat2010.mth 36 Blank 10 Sample esat2010.mth 6 SEQ-CCV 3 QC Std esat2010.mth 1 SEQ-CCB 3 QC Std esat2010.mth 37 C131107-10 @10X 11 Sample esat2010.mth 38 C131107-13 @10X 12 Sample esat2010.mth 39 C131107-15 @10X 13 Sample esat2010.mth 40 C131107-17 @10X 14 Sample esat2010.mth 41 C131107-20 @5X 15 Sample esat2010.mth 42 C131107-23 @10X 16 Sample esat2010.mth 43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 66 SEQ-CCV QC Std esat2010.mth	33	C131107-05 @5X	7	Sample	esat2010.mth
Sample Sample Sample Sample SEQ-CCV QC Std SEQ-CCV QC Std SEQ-CCB QC Std Sample SEQ-CCB QC Std Sample Sampl	34	1312035-MS4 @5X	8	Spike - 2 of 7	esat2010.mth
6 SEQ-CCV 3 QC Std esat2010.mth 1 SEQ-CCB 3 QC Std esat2010.mth 37 C131107-10 @10X 11 Sample esat2010.mth 38 C131107-13 @10X 12 Sample esat2010.mth 39 C131107-15 @10X 13 Sample esat2010.mth 40 C131107-17 @10X 14 Sample esat2010.mth 41 C131107-20 @5X 15 Sample esat2010.mth 42 C131107-23 @10X 16 Sample esat2010.mth 43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV	35	C131107-08 @5X	9	Sample	esat2010.mth
1 SEQ-CCB 3 QC Std esat2010.mth 37 C131107-10 @10X 11 Sample esat2010.mth 38 C131107-13 @10X 12 Sample esat2010.mth 39 C131107-15 @10X 13 Sample esat2010.mth 40 C131107-17 @10X 14 Sample esat2010.mth 41 C131107-20 @5X 15 Sample esat2010.mth 42 C131107-23 @10X 16 Sample esat2010.mth 43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV 4 QC Std esat2010.mth	36	Blank	10	Sample	esat2010.mth
37 C131107-10 @10X 11 Sample esat2010.mth 38 C131107-13 @10X 12 Sample esat2010.mth 39 C131107-15 @10X 13 Sample esat2010.mth 40 C131107-17 @10X 14 Sample esat2010.mth 41 C131107-20 @5X 15 Sample esat2010.mth 42 C131107-23 @10X 16 Sample esat2010.mth 43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV // QC Std esat2010.mth	6	SEQ-CCV Z		QC Std	esat2010.mth
38 C131107-13 @10X 12 Sample esat2010.mth 39 C131107-15 @10X 13 Sample esat2010.mth 40 C131107-17 @10X 14 Sample esat2010.mth 41 C131107-20 @5X 15 Sample esat2010.mth 42 C131107-23 @10X 16 Sample esat2010.mth 43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV У QC Std esat2010.mth	1	SEQ-CCB 3		QC Std	esat2010.mth
39 C131107-15 @10X 13 Sample esat2010.mth 40 C131107-17 @10X 14 Sample esat2010.mth 41 C131107-20 @5X 15 Sample esat2010.mth 42 C131107-23 @10X 16 Sample esat2010.mth 43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV QC Std esat2010.mth	37	C131107-10 @10X	11	Sample	esat2010.mth
40 C131107-17 @10X 14 Sample esat2010.mth 41 C131107-20 @5X 15 Sample esat2010.mth 42 C131107-23 @10X 16 Sample esat2010.mth 43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV Ψ QC Std esat2010.mth	38	C131107-13 @10X	12	Sample	esat2010.mth
41 C131107-20 @5X 15 Sample esat2010.mth 42 C131107-23 @10X 16 Sample esat2010.mth 43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV QC Std esat2010.mth	39	C131107-15 @10X	13	Sample	esat2010.mth
42 C131107-23 @10X 16 Sample esat2010.mth 43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV Ψ QC Std esat2010.mth	40	C131107-17 @10X	14	Sample	esat2010.mth
43 C131107-26 @10X 17 Sample esat2010.mth 44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV Υ QC Std esat2010.mth	41	C131107-20 @5X	15	Sample	esat2010.mth
44 C131107-29 @10X 18 Sample esat2010.mth 45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV Ψ QC Std esat2010.mth	42	C131107-23 @10X	16	Sample	esat2010.mth
45 C131107-31 @10X 19 Sample esat2010.mth 46 blank 20 Sample esat2010.mth 6 SEQ-CCV Ψ QC Std esat2010.mth	43	C131107-26 @10X	17	Sample	esat2010.mth
46 blank 20 Sample esat2010.mth 6 SEQ-CCV 4 QC Std esat2010.mth	44	C131107-29 @10X	18	Sample	esat2010.mth
6 SEQ-CCV Y QC Std esat2010.mth	45	C131107-31 @10X	19	Sample	esat2010.mth
	46	blank	20	Sample	esat2010.mth
1 SEQ-CCB Y QC Std esat2010.mth	6	SEQ-CCV 4		QC Std	esat2010.mth
	1	SEQ-CCB Y		QC Std	esat2010.mth

Instrument Tuning Report

File Name:

ESAT tuning 2010.tun

File Path:

C:\Elandata\Tuning\ESAT tuning 2010.tun

fuzilioliz

Analyte	Exact Mass	Meas Mass	Mass DAC	Res. DAC	Meas. Pk. Width	Custom Res.
C	12.000	12.025	2736	2057	0.752	
Mg	23.985	23.975	5638	2051	0.756	
In	114.904	114.875	27732	2011	0.752	
Ce	139.905	139.875	33820	2004	0.756	
Pb	207.977	207.925	50377	1988	0.757	
U	238.050	238.125	57706	1967	0.761	
Zn	65.926	65.925	15826	2033	0.753	

Report Date/Time:

Tuesday, December 10, 2013 08:11:12

Page 1

Daily Performance Report

Sample ID: Daily Performance Check

Sample Date/Time: Tuesday, December 10, 2013 08:26:18

Sample Description:

Method File: C:\Elandata\Method\ESAT Daily Performance 2010.mth Dataset File: C:\Elandata\DataSet\Default\Daily Performance Check.46452

Tuning File: C:\Elandata\Tuning\ESAT tuning 2010.tun

Optimization File: C:\Elandata\Optimize\ESAT optimization 2010.dac

Dual Detector Mode: Pulse Acq. Dead Time(ns): 80 Current Dead Time (ns): 80 Sullioliz

Summary

	Analyte	Mass	Meas. Intens. Mean	Net Intens. Mean	Net Intens. SD	Net Intens. RSD
	Mg	24.0	10938.3	10938.298	119.067	1.1
	In	114.9	111024.3	111024.271	1319.208	1.2
	U	238.1	34483.1	34483.138	305.806	0.9
[>	Ce	139.9	92318.8	92318.777	594.719	0.6
L	CeO	155.9	2363.7	0.026	0.000	1.0
[>	Ва	137.9	71451.1	71451.074	598.443	0.8
L	Ba++	69.0	1107.6	0.016	0.000	2.0
	Bkgd	220.0	0.7	0.700	0.361	51.6
	Bkgd	8.5	25.4	25.367	1.406	5.5

Current Optimization File Data

Current Value Description

0.58 Nebulizer Gas Flow [NEB]

1.20 Auxiliary Gas Flow

17.00 Plasma Gas Flow

7.25 Lens Voltage

1200.00 ICP RF Power

-1637.00 Analog Stage Voltage

900.00 Pulse Stage Voltage

0.00 Quadrupole Rod Offset Std [QRO]

-15.00 Cell Rod Offset Std [CRO]

22.00 Discriminator Threshold

-14.00 Cell Path Voltage Std [CPV]

0.00 RPa

0.25 RPq

0.82 DRC Mode NEB

-10.00 DRC Mode QRO

-1.00 DRC Mode CRO

-5.00 DRC Mode CPV

0.00 Cell Gas A

0.00 Cell Gas B

Current Autolens Data

Analyte	Mass	Num of Pts	DAC Value	Maximum Intensity
Be	9	45	3.0	612.0
Co	59	45	6.8	42526.2
In	115	45	8.0	120413.9

SmartTune Wizard - Summary

```
Optimization Summary
```

```
SmartTune file: C:\Elandata\Wizard\SmartTune\ESAT Smart Tune 2010.swz
Start Time: 12/10/2013 8:07:08 AM
End Time: 12/10/2013 8:30:01 AM
Mass Calibration and Resolution - [Passed] Optimum value(s): N/A
        Target/Obtained mass (12/12.025), Target/Obtained resolution (0.75/0.752)
        Target/Obtained mass (23.985/23.975), Target/Obtained resolution (0.75/0.756)
        Target/Obtained mass (114.904/114.875), Target/Obtained resolution (0.75/0.752)
        Target/Obtained mass (139.905/139.875), Target/Obtained resolution (0.75/0.756)
        Target/Obtained mass (207.977/207.925), Target/Obtained resolution (0.75/0.757)
        Target/Obtained mass (238.05/238.125), Target/Obtained resolution (0.75/0.761)
        Target/Obtained mass (65.926/65.925), Target/Obtained resolution (0.75/0.753)
Nebulizer Gas Flow [NEB] - [Passed] Optimum value(s): 0.58
        Obtained Intensity (In 114.904): 129305
        Obtained Formula (CeO 155.9 / Ce 139.905): 0.025 (=3082 / 121009)
Lens Voltage - [Passed] Optimum value(s): 7.25
        Obtained Intensity (In 114.904): 128454
AutoLens - [Passed] Optimum value(s): y = 0.047 \times + 3.069
Daily Performance Check - [Passed] Optimum value(s): N/A
        Obtained Intensity (Mg 23.985): 10938
       Obtained Intensity (In 114.904): 111024
       Obtained Intensity (Bkgd 220): 1
       Obtained Formula (CeO 155.9 / Ce 139.905): 0.026 (=2364 / 92319)
       Obtained Formula (Ba++ 68.9525 / Ba 137.905): 0.015 (=1108 / 71712)
```

SmartTune Wizard - Details

Optimization Details SmartTune file: C:\Elandata\Wizard\SmartTune\ESAT Smart Tune 2010.swz Optimization Status Start Time: 12/10/2013 8:07:08 AM Mass Calibration and Resolution Optimization Settings: Method: C:\Elandata\Method\ESAT Tuning 2010.mth. Tuning File: C:\Elandata\Tuning\ESAT tuning 2010.tun Iterations: 6 Target accuracy (+/- amu): 0.1 for Mass Cal. and 0.1 for Resolution Peak height (%) for Res. Opt.: 10 Optimization Results: Initial Try Target/Obtained mass (12/12.025), Target/Obtained resolution (0.75/0.752) Target/Obtained mass (23.985/23.975), Target/Obtained resolution (0.75/0.756) Target/Obtained mass (114.904/114.875), Target/Obtained resolution (0.75/0.752) Target/Obtained mass (139.905/139.875), Target/Obtained resolution (0.75/0.756) Target/Obtained mass (207.977/207.925), Target/Obtained resolution (0.75/0.757) Target/Obtained mass (238.05/238.125), Target/Obtained resolution (0.75/0.761) Target/Obtained mass (65.926/65.925), Target/Obtained resolution (0.75/0.753) [Passed] Optimum value(s): N/A Nebulizer Gas Flow [NEB] Optimization Settings: Method: C:\Elandata\Method\ESAT Optimize 2010.mth. Initial Try - Start/End/Step: 0.56/0.8/0.01. Intensity Criterion: In 114.904 Maximum Formula Criterion: CeO 155.9 / Ce 139.905 <= 0.029 Optimization Results: Initial Try Obtained Intensity (In 114.904): 129305 Obtained Formula (CeO 155.9 / Ce 139.905): 0.025 (=3082 / 121009) [Passed] Optimum value(s): 0.58 Lens Voltage Optimization Settings: Method: C:\Elandata\Method\ESAT Optimize 2010.mth. Initial Try - Start/End/Step: 4/7.5/0.25. Intensity Criterion: In 114.904 Maximum Optimization Results: Initial Try Obtained Intensity (In 114.904): 128454 [Passed] Optimum value(s): 7.25 AutoLens Optimization Settings: Method: C:\Elandata\Method\ESAT AutoLens Calibration 2010.mth. Initial Try - Start/End/Step: 1.5/12.5/0.25. Optimization Results: Initial Try

[Passed] Optimum value(s): $y = 0.047 \times + 3.069$

Ańalyte	Mass	Points	DAC	MaxIntensity
Ве	9.012	45	3	612.03
Co	58.933	45	6.75	42526.2
In	114.904	45	8	120414

Daily Performance Check

Optimization Settings:

Method: C:\Elandata\Method\ESAT Daily Performance 2010.mth.

Intensity Criterion: Mg 23.985 > 10000
Intensity Criterion: In 114.904 > 100000
Intensity Criterion: Bkgd 220 <= 30</pre>

Formula Criterion: CeO 155.9 / Ce 139.905 <= 0.03 Formula Criterion: Ba++ 68.9525 / Ba 137.905 <= 0.03

Optimization Results:

Initial Try

Obtained Intensity (Mg 23.985): 10938 Obtained Intensity (In 114.904): 111024

Obtained Intensity (Bkgd 220): 1

Obtained Formula (CeO 155.9 / Ce 139.905): 0.026 (=2364 / 92319)
Obtained Formula (Ba++ 68.9525 / Ba 137.905): 0.015 (=1108 / 71712)

[Passed] Optimum value(s): N/A

End Time: 12/10/2013 8:30:01 AM

Method 200.8 - Summary Report

Sample ID: Blank

Sample Date/Time: Tuesday, December 10, 2013 10:27:47

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth
Dataset File: C:\Elandata\Dataset\Default\Blank.46466

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean Conc. RSD	Sample Unit
, >	Li	6	7653.017	1.876			ug/L
Ĺ	Ве	9	7.778	44.607			ug/L
Γ	Al	27	2457.151	6.555			ug/L
>	Sc	45	121504.446	5.749			ug/L
	V	51	-2754.445	26.410			ug/L
	Cr	52	6346.558	4.335			ug/L
	Mn	55	1833.559	18.430			ug/L
1	Co	59	42.778	14.750			ug/L
1	Ni	60	73.656	21.895			ug/L
L	Cu	65	202.781	0.949			ug/L
Γ	Zn	66	528.911	3.310			ug/L
>	Ge	72	80853.034	8.213	•		ug/L
	As	75	-265.854	57.880			ug/L
L	Se	82	28.778	21.431			ug/L
	Υ	89	28.889	12.010			ug/L
Γ	Мо	98	191.373	9.188			ug/L
	Ag	107	23.333	7.143			ug/L
1	Ag	109	18.889	28.364			ug/L
1	Cd	111	8.717	74.756			ug/L
1	Cd	114	47.187	9.615			ug/L
>	In	115	278953.533	1.758			ug/L
L	Sb	121	67.778	18.456			ug/L
Γ	Ва	135	19.444	34.641			ug/L
>	Tb	159	225410.261	1.001			ug/L
	Но	165	10.000	0.000			ug/L
	TI	205	109.445	6.155			ug/L
1	Pb	208	165.556	5.166			ug/L
	Bi	209	12.222	34.317			ug/L
1	Th	232	23.889	31.460			ug/L
L	U	238	7.222	35.251			ug/L
Γ	Na	23	21267.269	3.850			mg/L
	Mg	24	3363.130	7.739			mg/L
	K	39	724474.342	0.845			mg/L
	Са	44	20296.242	1.795			mg/L
	Fe	54	26247.848	5.761			mg/L
_>	Sc-1	45	121504.446	5.749			mg/L
	Kr	83	82.778	20.368			mg/L

Sample ID: Blank

Report Date/Time: Tuesday, December 10, 2013 10:29:22

QC Calculated Values

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
Γ>	Li	6					
L	Be	9		·			
Γ	Al	27					
>	Sc	45					
- 1	V	51					
	Cr	52					
	Mn	55					
ļ	Со	59	,				
	Ni	60					
Ĺ	Cu	65	•				
	Zn	66					
>	Ge	72					
	As	75		•			
L	Se Y	82					
г	r Mo	89					
-!		98 107					
1	Ag Ag	107 109					•
1	Cd	111					
1	Cd	114					
>	In	115					
	Sb	121					
È	Ва	135					
>	Tb	159					
	Но	165					
i.	TI	205					
i	Pb	208					
i	Bi	209					
j	Th	232					
Ĺ	U	238					
Ī	Na	23	'			•	
	Mg	24					
1	K	39					
	Ca	44					
	Fe	54					
<u>_</u> >	Sc-1	45					•
	Kr	83					

Method 200.8 - Summary Report

Sample ID: Standard 1

Sample Date/Time: Tuesday, December 10, 2013 10:30:49

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\Standard 1.46467

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

				Ochochication it	oouno			
	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	7594.617	4.190	7594.617			ug/L
L	Be	9	500.020	9.062	0.065	10.00000	13.40	ug/L
Γ	Αl	27	83956.537	8.262	0.678	50.00000	5.81	ug/L
>	Sc	45	120394.635	9.420	120394.635			ug/L
	V	51	30833.115	7.799	0.279	10.00000	1.90	ug/L
	Cr	52	34734.180	4.887	0.238	10.00000	11.94	ug/L
	Mn	55	49482.453	8.097	0.396	10.00000	2.86	ug/L
	Co	59	41210.314	7.106	0.343	10.00000	9.36	ug/L
	Ni	60	9603.951	5.072	0.080	10.00000	13.23	ug/L
Ĺ	Cu	65	11308.011	4.254	0.093	10.00000	12.24	ug/L
Γ	Zn	66	5816.596	3.189	0.064	10.00000	5.69	ug/L
>	Ge	72	83093.307	7.094	83093.307			ug/L
	As	75	7463.800	3.780	0.093	10.00000	3.20	ug/L
Ĺ	Se	82	736.720	4.978	0.009	10.00000	10.05	ug/L
	Υ	89	35.556	28.255	6.667			ug/L
Γ	Мо	98	20484.551	4.108	0.070	10.00000	4.45	ug/L
	Ag	107	31942.002	2.402	0.111	10.00000	2.08	ug/L
	Ag	109	30016.926	1.883	0.104	10.00000	2.25	ug/L
	Cd	111	7296.430	3.139	0.025	10.00000	2.81	ug/L
	Cd	114	16315.230	3.993	0.056	10.00000	3.64	ug/L
>	ln	115	288040.353	0.382	288040.353			ug/L
L	Sb	121	22532.213	1.156	0.078	10.00000	1.24	ug/L
Γ	Ва	135	5187.709	2.632	0.023	10.00000	3.48	ug/L
>	Tb	159	227708.554	0.932	227708.554			ug/L
	Но	165	8.889	21.651	-0.000			ug/L
	TI	205	18952.031	1.834	0.083	10.00000	2.40	ug/L
	Pb	208	25835.365	1.972	0.113	10.00000	1.75	ug/L
	Bi	209	191,114	10.764	0.001			ug/L
	Th	232	23468.982	0.743	0.103	10.00000	1.52	ug/L
L	U	238	23440.547	1.437	0.103	10.00000	2.28	ug/L
Γ	Na	23	176765.182	6.364	1.297	0.10000	6.74	mg/L
	Mg	24	98796.741	7.091	0.794	0.10000	2.35	mg/L
	K	39	1014721.944	2.261	2.503	0.10000	23.49	mg/L
	Ca	44	29095.405	3.692	0.075	0.10000	18.38	mg/L
	Fe	54	60412.407	7.545	0.286	0.10000	3.46	mg/L
_>	Sc-1	45	120394.635	9.420	120394.635			mg/L
	Kr	83	102.779	20.914	20.000			mg/L

Sample ID: Standard 1

Report Date/Time: Tuesday, December 10, 2013 10:32:24

QC Calculated Values

-	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
[>	Li -	6	•				
Ļ	Ве	9					
ļ	Al	27					
>	Sc	45		•			
	٧	51					
1	Cr	52					
ļ	Mn	55 50			*		
-	Co	59					
	Ni O:-	60 65					
Ļ	Cu	65 66					
1	Zn	66 72					
>	Ge	72 75					
1	As Se	75 82					
L	Y	89					
г	Mo	98			4		
	Ag	107		•			
1	Ag	109					
1	Cd	111					
İ	Cd	114					
>	In	115					
	Sb	121					
Ė	Ва	135		•			
>	Tb	159					
	Но	165		:			
i	TI	205					
i	Pb	208					
į	Bi	209					
ĺ	Th	232					
Ĺ	Ų	238					
Ī	Na	23					
	Mg	24					
.	K	39					
1	Са	44					
	Fe	54					
_>	Sc-1	45				6	
	Kr	83					

Method 200.8 - Summary Report

Sample ID: Standard 2

Sample Date/Time: Tuesday, December 10, 2013 10:33:51

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\Standard 2.46468

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean Co	onc. RSD	Sample Unit
[>	Li	6	7483.387	8.258	7483.387			ug/L
L	Be	9	1046.754	5.177	0.139	20.27001	8.30	ug/L
Γ	Al	27	168825.540	3.581	1.324	99.50689	4.69	ug/L
>	Sc	45	125751.158	4.971	125751.158			ug/L
	V	51	66660.152	10.333	0.552	19.95862	7.16	ug/L
	Cr	52	65432.472	5.301	0.469	19.94116	6.34	ug/L
	Mn	55	93374.114	3.942	0.728	19.64972	2.29	ug/L
1	Co	59	82584.671	7.635	0.656	19.81640	4.99	ug/L
	Ni	60	17823.097	7.929	0.141	19.49677	8.88	ug/L
L	Cu	65	21713.256	4.423	0.171	19.66628	7.59	ug/L
Γ	Zn	66	11055.328	2.376	0.127	19.98781	3.97	ug/L
>	Ge	72	82917.629	1.794	82917.629	•		ug/L
	As	75	15262.815	4.312	0.187	20.01723	2.55	ug/L
	Se	82	1539.986	6.528	0.018	20.25433	8.32	ug/L
	Υ	89	45.000	16.973	16.111			ug/L
Γ	Мо	98	41726.908	2.060	0.143	20.06831	1.83	ug/L
	Ag	107	62640.524	4.432	0.216	19.89727	3.31	ug/L
1	Ag	109	60045.518	2.587	0.207	19.97892	3.68	ug/L
	Cd	111	14828.947	1.528	0.051	20.04377	2.90	ug/L
1	Cd	114	32708.969	0.990	0:113	19.99267	2.31	ug/L
>	In	115	289780.105	1.391	289780.105			ug/L
L	Sb	121	45595.172	1.313	0.157	20.02958	2.20	ug/L
Γ	Ва	135	10015.797	0.800	0.044	19.89634	0.78	ug/L
>	Tb	159	225916.241	0.676	225916.241			ug/L
	Ho	165	8.889	47.186	-0.000			ug/L
	TI	205	37963.301	1.592	0.168	20.04912	1.54	ug/L
	Pb	208	51707.860	1.433	0.228	20.04730	0.77	ug/L
	Bi	209	22.222	35.444	0.000			ug/L
1	Th	232	46839.371	2.419	0.207	20.02507	2.61	ug/L
· [U .	238	47253.533	1.260	0.209	20.06338	1.91	ug/L
Γ	Na	23	1564627.774	3.341	12.297	0.99946	7.78	mg/L
1	Mg	24	998081.993	1.932	7.918	0.99997	3.18	mg/L
	K	39	3931053.893	4.088	25.346	1.00012	7.53	mg/L
1	Ca	44	110324.366	3.633	0.712	0.99940	7.74	mg/L
	Fe	54	268460.794	6.118	1.924	0.99519	10.24	mg/L
_	Sc-1	45	125751.158	4.971	125751.158			mg/L
	Kr	83	90.556	20.687	7.778			mg/L

Sample ID: Standard 2

Report Date/Time: Tuesday, December 10, 2013 10:35:27

'QC Calculated Values

				QO Odiodiatod	v aracc		
_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
Γ>	Li	6					
L	Be	. 9					
Γ	ΑI	27				•	
>	Sc	45					
	V	- 51		i e			
	Cr	52					
	Mn	55					
	Co	59					
	Ni	60			4		
Ĺ	Cu	65					
Ī	Zn	66					
>	Ge	72		• *			
İ	As	75					
Ì	Se	82					
_	Υ	89		•			
Γ	Мо	98					
į	Ag	107					
i	Ag	109					
į	.Cd	111					
i	Cd	114					
>	In	115	•				
ĺ	Sb	121					
Ē	Ва	135					
>	Tb	159					
ĺ	Но	165	•				
i	TI	205					
i	Pb	208					
i	Bi	209	•				
i	Th	232					
i	U	238		•			
ř	Na	23					
i	Mg	24		•			
i	K	39					
	Са	44					•
i	Fe	54					
Ĺ>	Sc-1	45					
L/	Kr	83					

Sample ID: Standard 3

Sample Date/Time: Tuesday, December 10, 2013 10:36:55

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\Standard 3.46469

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL):

Diluted To Volume (mL):

Concentration Results

Г.	Analyte Li	Mass 6	Meas. Intens. Mean 7268.121	Meas. Intens. RSD 5.348	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Be	9	5315.593	1.622	7268.121 0.732	100.29004	6.91	ug/L
r r	Al	27	821956.769	5.910	7.090	501.47493	4.58	ug/L ug/L
>	Sc	45	115567.951	2.323	115567.951	501.47495	4.50	
>	V	51	320477.105	4.555	2.797	100.04997	5.20	ug/L ug/L
i	V Cr	52	287940.324	4.087	2.7 9 7 2.441	100.04997	6.03	-
1	Mn	55	439478.771	12.274	3.782	100.17828	9.97	ug/L ug/L
1	Co	59 59	410969.755	5.925	3.762	100.09659	3.85	_
	Ni Ni	60	88159.115	5.255	0.762	100.32584	5.71	ug/L ug/L
1	Cu	65	102862.609	2.265	0.889	100.23536	4.37	ug/L ug/L
Ļ	Zn	66	51959.872	4.854	0.593	99.66754	3.02	ug/L ug/L
1.	Ge	72	86729.175	6.312	86729.175	99.00754	3.02	ug/L ug/L
>	As	75	75937.279	1.528	0.881	99.70280	4.78	ug/L ug/L
į į	Se	82	7349.429	4.599	0.085	99.70374	10.16	ug/L ug/L
L	Y	89	7.549.429 55.000	25.891	26.111	99.70374	10.10	ug/L ug/L
Г	Mo	98	207189.271	4.661	0.710	99.97547	7.56	ug/L ug/L
1	Ag	107	315313.159	2.628	1.081	99.97823	2.21	ug/L ug/L
	Ag	107	304173.802	1.974	1.043	100.02870	4.83	ug/L ug/L
l	Λg Cd	111	73612.950	2.175	0.252	99.94532	4.63 1.85	ug/L ug/L
1	Cd	114	165344.379	2.346	0.252	100.02321	1.60	ug/L ug/L
	In	115	291791.763	3.178	291791.763	100.02321	1.00	ug/L ug/L
>	Sb	121	231113.596	1.072	0.792	100.04821	4.13	ug/L ug/L
L T	Ва	135	51968.573	2.307	0.792	100.12495	2.52	ug/L ug/L
>	Tb	159	227485.810	1.203	227485.810	100.12493	2.32	ug/L ug/L
>	Но	165	8.333	80.000	-0.000			ug/L
i	TI	205	188908.813	1.245	0.830	99.96706	1.47	ug/L
	Pb	208	255766.075	1.476	1.124	99.93934	1.81	ug/L
Ì	Bi	209	31.667	5.263	0.000	33.33334	1,01	ug/L
i	Th	232	240048.464	1.872	1.055	100.09258	3.07	ug/L
i	U	238	246242.361	3.427	1.083	100.17721	4.11	ug/L
F	Na	23	15594848.406	1.770	134.821	10.00874	3.19	mg/L
i	Mg	24	9813797.706	5.643	84.854	10.00669	3.64	mg/L
i	K	39	27287389.920	1.205	230.221	9.98993	2.22	mg/L
i	Са	44	857587.925	3.472	7.255	10.00184	3.88	mg/L
ĺ	Fe	54	2170096.160	5.391	18.558	9.99582	4.33	mg/L
>	Sc-1	45	115567.951	2.323	115567.951	2.00002	1.00	mg/L
L/	Kr	83	111.112	12.580	28.334			mg/L
	*			,				J =

Sample ID: Standard 3

Report Date/Time: Tuesday, December 10, 2013 10:38:31

				Q = 0 0 0 0 0 0			
	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
[>	Li	6					
L	Be	. 9					
Γ	Al	27					
>	Sc	45					
	V .	51					•
	Cr	52					
	Mn	55					
	Co	59					
- 1	Ni	60					
Ĺ	Cu	65					
Γ	Zņ	66					
>	Ge	72					
	As	75			•		
L	Se	82					
_	Y	89					
	Мо	98					
	Ag	107					
ļ	Ag	109					
ļ	Cd	111		,			
	Cd	114					
>	ln O	115		•			
Ĺ	Sb	121				•	
ļ	Ba	135					
>	Tb	159					
	Ho	165					,
-	TI	205			•		
ŀ	Pb	208	•				
1	Bi Th	209					
1	Th	232					
L	U	238					•
	Na Ma	23					
1	Mg K	24 39					
1	Ca	39 44					
	Fe	54					
	Sc-1	45	• •	•			
	Kr	83					•
	M	03					

Calibration

Analyte	Mass	Correlation Coefficient
Li	6	0.00000
Be Al	9	0.999900
Sc	27 45	0.999911
V	45 51	0.000007
v Cr	52	0.999997
Mn	52 55	0.999967
Co	59	0.999962 0.999887
Ni	60	0.999890
Cu	65	0.99966
Zn	66	0.999889
Ge	72	0.999009
As	75	0.999912
Se	82	0.999895
Υ	89	0.00000
Mo	98	0.99998
Ag	107	0.999997
Ag	109	0.999999
Cd	111	0.999997
Cd	114	0.99999
In	115	
Sb	121	0.999997
Ва	135	0.999982
Tb	159	
Но	165	
TI	205	0.99998
Pb	208	0.999996
Bi	209	
Th	232	0.999991
U	238	0.999968
Na	23	0.999962
Mg	24	0.999978
K	39	0.999950
Ca	44	0.99998
Fe	54	0.999979
Sc-1	45	
Kr	83	

Sample ID: SEQ-IFB

Report Date/Time: Tuesday, December 10, 2013 10:58:00

Page 1

Sample ID: SEQ-ICV

Sample Date/Time: Tuesday, December 10, 2013 10:39:57

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-ICV.46470

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	7407.184	8.151	7407.184			ug/L
Ĺ	Be	9	2593.872	2.470	0.351	48.07769	9.76	ug/L
-	Al	27	405633.550	5.248	3.545	250.71094	1.32	ug/L
>	Sc	45	113811.793	5.608	113811.793			ug/L
. !	V	51	160823.881	7.754	1.435	51.32437	2.93	ug/L
ļ	Cr	52	141728.501	1.052	1.196	49.06248	5.84	ug/L
	Mn	55	220070.287	9.233	1.917	50.74537	5.80	ug/L
	Co	59	195376.352	5.677	1.717	48.46994	3.40	ug/L
	Ni	60	43691.908	2.798	0.384	50.49462	6.30	ug/L
Ĺ	Cu	65	51429.167	6.880	0.452	50.93759	12.90	ug/L
	Zn	66	26043.106	4.418	0.296	49.78749	9.88	ug/L
>	Ge	72	86347.481	6.738	86347.481			ug/L
١.	As	75	38372.583	2.860	0.448	50.77895	4.07	ug/L
L	Se	82	3704.922	2.392	0.043	50.27558	9.25	ug/L
	Υ	89	45.556	26.968	16.667			ug/L
ſ	Мо	98	103988.057	2.216	0.353	49.63276	2.16	ug/L
	Ag	107	159368.216	3.254	0.542	50.09689	3.61	ug/L
1	Ag	109	151865.495	2.792	0.516	49.46955	2.53	ug/L
	Cd	111	36923.884	3.109	0.125	49.68931	2.75	ug/L
	Cd	114	81381.454	3.154	0.276	48.79325	3.20	ug/L
>	In	115	294251.038	0.385	294251.038			ug/L
Ĺ	Sb	121	114869.380	0.941	0.390	49.25226	0.83	ug/L
Γ	Ва	135	25511.978	2.099	0.110	48.32735	1.04	ug/L
>	Tb	159	231250.551	1.575	231250.551			ug/L
1	Но	165	8.889	47.186	-0.000			ug/L
	TI	205	94122.954	1.278	0.407	48.96639	0.74	ug/L
	Pb	208	126175.454	2.215	0.545	48.45879	0.65	ug/L
	Bi	209	16.667	62.450	0.000	•		ug/L
	Th	232	118787.314	1.725	0.514	48.72319	3.24	ug/L
L	U	238	121526.390	3.062	0.526	48.63537	3.83	ug/L
Γ	Na	23	7890871.109	2.683	69.240	5.14022	3.32	mg/L
	Mg	24	4952406.115	6.022	43.494	5.12916	3.02	mg/L
	K	39	13961231.198	0.574	116.968	5.07557	5.99	mg/L
	Ca	44	422083.455	5.141	3.542	4.88333	1.28	mg/L
	Fe	54	1076600.067	5.601	9.263	4.98891	7.85	mg/L
L>	Sc-1	45	113811.793	5.608	113811.793			mg/L
	Kr	83	96.667	14.113	13.889			mg/L

Sample ID: SEQ-ICV

Report Date/Time: Tuesday, December 10, 2013 10:41:33

							4
г	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Li D-	6	00.455	96.788			
Ļ	Be	9	96.155				
1.	Al	27	100.284				
>	Sc	45		93.669			
,	V	51	102.649				
ļ	Cr	52	98.125				
	Mn	55	101.491				
	Со	59	96.940				
	Ni	60	100.989				
Ĺ	Cu	65	101.875				
Γ	Zn	66	99.575	•			
>	Ge	72		106.796			
	As	75	101.558				
L	Se	82	100.551				
	Υ	89					
	Mo ~	98	99.266				
	Ag	107	100.194				
	Ag	109	98.939				
	Cd	111	99.379				
	Cd	114					
>	In	115		105.484			
L	Sb	121	98.505				
Γ	Ва	135	96.655				
>	Tb	159		102.591			
	Но	165					
	TI	205	97.933	•			
	Pb	208	96.918				
	Bi	209					
	Th	232	97.446				
L	U	238	97.271				
Γ	Na	23	102.804				
l	Mg	24	102.583				
	K	39	101.511				
	Ca	44	97.667				
	Fe	54	99.778				
_>	Sc-1	45					
	Kr	83	•				

Sample ID: SEQ-SCV

Sample Date/Time: Tuesday, December 10, 2013 10:43:15

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-SCV.46471

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
Γ>	Li	6	7474.467	1.518	7474.467			ug/L
L	Be	9	2788.400	2.453	0.372	50.97431	3.13	ug/L
Γ	Αl	27	102396.464	3.283	0.857	60.58898	7.13	ug/L
>	Sc	45	117296.817	9.852	117296.817			ug/L
1	V	51	167026.159	15.950	1.446	51.72416	12.32	ug/L
ĺ	Cr	52	151177.008	4.289	1.244	51.05653	10.47	ug/L
	Mn	55	217426.904	8.015	1.841	48.72515	3.01	ug/L
į	Co	59	203047.258	10.438	1.733	48.91465	7.32	ug/L
	Ni	60	46045.521	5.705	0.394	51.73721	7.97	ug/L
Ĺ.	Cu	65	54734.357	3.361	0.468	52.73626	11.43	ug/L
Γ	Zn	66	28027.297	6.011	0.314	52.80527	4.86	ug/L
>	Ge	72	87545.078	8.480	87545.078			ug/L
1	As	75	38622.563	1.178	0.446	50.54546	7.88	ug/L
L	Se	82	19923.294	3.161	0.228	268.85901	10.16	ug/L
	Υ	89	51.111	13.179	22.222			ug/L
Γ	Мо	98	106722.999	1.974	0.363	51.03813	4.50	ug/L
	Ag	107	164253.967	1.417	0.559	51.70115	1.91	ug/L
1	Ag	109	157112.147	1.418	0.535	51.27669	4.16	ug/L
	Cd	111	37884.252	2.680	0.129	51.07602	4.51	ug/L
	Cd	114	83299.858	2.275	0.283	50.01382	2.63	ug/L
>	In	115	293930.070	2.797	293930.070			ug/L
L	Sb	121	119936.034	1.079	0.408	51.51501	3.53	ug/L
Γ	Ва	135	26564.672	1.023	0.115	50.37898	1.60	ug/L
>	Tb	159	231041.139	1.940	231041.139			ug/L
ĺ	Но	165	11.111	22.913	0.000			ug/L
	TI	205	98039.655	3.419	0.424	51.06949	4.42	ug/L
	Pb	208	131553.565	1.448	0.569	50.58025	0.81	ug/L
	Bi	209	172.225	9.548	0.001			ug/L
	Th	232	123098.367	1.402	0.533	50.54098	3.19	ug/L
L	U	238	123487.828	2.187	0.535	49.47244	3.63	ug/L
Γ	Na	23	7975627.793	5.146	68.258	5.06727	11.12	mg/L
1	Mg	24	5288492.273	4.175	45.219	5.33257	5.39	mg/L
	K	39	14572973.434	0.174	119.040	5.16548	9.76	mg/L
	Ca	44	432736.599	6.960	3.530	4.86585	4.12	mg/L
İ	Fe	54	1142764.921	3.070	9.573	5.15606	7.70	mg/L
L>	Sc-1	45	117296.817	9.852	117296.817			mg/L
	Kr	83	92.778	13.242	10.000			mg/L

Sample ID: SEQ-SCV

Report Date/Time: Tuesday, December 10, 2013 10:44:52

Page 1

				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
Г.	Analyte Li	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>		6	404.040	97.667			
Ļ	Ве	9	101.949				
	Αl	27	121.178				
>	Sc	45		96.537			
	V	51	103.448				
	Cr	52	102.113				
	Mn	55	97.450				
.	Со	59	97.829				
1	Ni	60	103.474				
L	Cu	65	105.473		•	•	
Γ	Zn	66	105.611				
>	Ge	72	•	108.277			
	As	75	101.091				
L	Se	82	107.544				
	Υ	89					
Γ	Мо	98	102.076				
	Ag	1.07	103.402				
Ì	Ag	109	102.553				
i i	Cď	111	102.152				
İ	Cd	114					•
>	In	115		105.369			•
i	Sb	121	103.030				
Ē	Ва	135	100.758				
>	Tb	159	•	102.498			
į	Но	165					
i	TI	205	102.139		•		
	Pb	208	101.161				
ĺ	Bi	209			•		
ĺ	Th	232	101.082				
i	U	238	98.945				
Ė	Na	23	101.345				
i	Mg	24	106.651				
- 1	K	39	103.310				
	Ca	44	97.317				
í	Fe	54	103.121	š			
	Sc-1	45	100.121				. *
L>	Kr	83					
	1 XI	. 00					

Sample ID: SEQ-ICB

Sample Date/Time: Tuesday, December 10, 2013 10:46:33

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-ICB.46472

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean C	Conc. RSD	Sample Unit
>	Li	6	7221.396	3.866	7221.396			ug/L
L	Ве	9	4.444	94.373	-0.000	-0.05650	138.94	ug/L
	Al	27	2539.408	9.766	0.002	0.11550	160.53	ug/L
>	Sc	45	116629.525	8.651	116629.525			ug/L
-	V	51	-1791.822	44.975	0.007	0.25740	104.01	ug/L
-	Cr	52	6063.498	3.580	-0.000	-0.00295	4519.36	ug/L
ļ	Mn	55	1924.002	14.258	0.002	0.04273	223.95	ug/L
	Со	59	65.000	30.230	0.000	0.00606	94.78	ug/L
ļ	Ni	60	76.739	12.311	0.000	0.00729	190.89	ug/L
Ĺ	Cu	65	196.670	13.639	0.000	0.00424	949.21	ug/L
F	Zn	66	507.798	0.758	-0.000	-0.06063	113.79	ug/L
>	Ge	72	82373.881	5.971	82373.881			ug/L
	As	75	-29.715	123.933	0.003	0.33162	14.95	ug/L
L	Se	82	37.223	34.199	0.000	0.11249	154.87	ug/L
	Υ	89	25.000	23.094	-3.889			ug/L
Γ	Мо	98	671.155	15.483	0.002	0.22075	23.19	ug/L
	Ag	107	57.778	30.300	0.000	0.01021	53.61	ug/L
	Ag	109	49.445	25.745	0.000	0.00940	42.12	ug/L
	Cd	111	15.162	38.191	0.000	0.00774	97.18	ug/L
	Cd	114	44.473	18.861	-0.000	-0.00352	136.66	ug/L
>	. In	115	297892.057	0.804	297892.057	•		ug/L
L	Sb	121	392.790	7.642	0.001	0.13585	10.14	ug/L
Γ	Ва	135	21.667	20.352	0.000	0.00292	262.49	ug/L
>	Tb	159	232666.955	1.848	232666.955			ug/L
	Но	165	11.667	0.000	0.000			ug/L
	TI -	205	131.668	29.114	0.000	0.00983	207.29	ug/L
	Pb	208	192.779	2.176	0.000	0.00837	16.89	ug/L
	Bi	209	8.333	20.000	-0.000			ug/L
	Th	232	53.889	19.884	0.000	0.01197	39.46	ug/L
L	U	238	24.444	39.951	0.000	0.00680	58.68	ug/L
Γ	Na	23	25407.745	5.262	0.043	0.00321	16.81	mg/L
	Mg	24	4377.094	7.835	0.010	0.00117	26.61	mg/L
İ	ĸ	39	717483.689	0.447	0.219	0.00952	238.10	mg/L
İ	Са	44	19667.579	2.797	0.002	0.00296	456.67	mg/L
İ	Fe	54	27067.162	7.098	0.016	0.00876	25.12	mg/L
>	Sc-1	45	116629.525	8.651	116629.525			mg/L
	Kr	83	97.223	17.843	14.445			mg/L

Sample ID: SEQ-ICB

Report Date/Time: Tuesday, December 10, 2013 10:48:09

Page 1

				QO Odicalated	i values		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 94.360	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
	Be	9		01.000			
ř	Al	27					
>	Sc	45		95.988			
1	V	51		00,000			
j	Cr	52					
j.	Mn	55					
	Co	59				•	
	Ni	60					
L	Cu	65					
Γ	Zn	66					
>	Ge	72		101.881			
	As	75					
L	Se	82					
_	Υ .	89					
Ţ.	Мо	98					
	Ag	107					
	Ag	109					
	Cd	111					
1	Cd	114		400 700	,		
>	ln O	115		106.789			
Ļ	Sb	121					
	Ba Th	135		103.219			
>	Tb Ho	159 165		103.219			
 	TI	205					
i I	Pb	208					
	Bi	209					
	Th	232					
	U	238					
r	Na	23					
	Mg	24					
	ĸ	39					
	Ca	44			•		
	Fe	54		•	•		
	Sc-1	45					
	Kr	83	•				

Sample ID: SEQ-CRL

Sample Date/Time: Tuesday, December 10, 2013 10:49:50

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-CRL.46473

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	7163.005	7.000	7163.005			ug/L
L	Be	9	22.778	40.299	0.002	0.29208	52.46	ug/L
Γ	Αl	27	33924.177	4.718	0.266	18.82768	7.10	ug/L
>	Sc	45	118546.262	2.174	118546.262			ug/L
	V	51	4357.843	8.930	0.059	2.12489	4.48	ug/L
	Cr	52	8822.372	9.697	0.022	0.91573	39.67	ug/L
	Mn	55	2776.400	23.809	0.008	0.21875	61.61	ug/L
	Co	59	902.288	14.476	0.007	0.20524	16.66	ug/L
	Ni	60	943.333	6.235	0.007	0.96765	9.07	ug/L
L	Cu	65	1118.989	1.565	0.008	0.87549	4.55	ug/L
Γ	Zn	66	2922.350	2.487	0.030	5.02150	6.54	ug/L
>	Ge	72	80327.144	3.243	80327.144			ug/L
	As	75	1320.752	14.425	0.020	2.23004	9.73	ug/L
L	Se	82	126.780	14.659	0.001	1.44271	21.46	ug/L
	Υ	89	31.111	3.093	2.222			ug/L
Γ	Мо	98	647.766	1.611	0.001	0.20727	5.40	ug/L
	Ag	107	1646.884	6.983	0.005	0.49948	5.44	ug/L
	Ag	109	1515.184	3.464	0.005	0.47754	4.19	ug/L
	Cd	111	155.591	14.999	0.000	0.19345	18.11	ug/L
	Cd	114	365.459	3.635	0.001	0.18523	6.71	ug/L
>	In	115	300196.333	2.305	300196.333			ug/L
L	Sb	121	2478.825	0.067	0.008	1.01213	2.37	ug/L
Γ	Ва	135	289.451	3.374	0.001	0.50431	4.06	ug/L
>	Tb	159	234099.225	0.507	234099.225			ug/L
	Но	165	6.667	25.000	-0.000			ug/L
	TI	205	402.791	7.811	0.001	0.14881	11.50	ug/L
1	Pb	208	701.682	3.088	0.002	0.20126	3.95	ug/L
	Bi	209	13.889	27.713	0.000			ug/L
	Th	232	2115.916	9.037	0.009	0.84704	8.87	ug/L
L	U	238	490.575	2.929	0.002	0.19095	3.19	ug/L
.[Na	23	6317.638	3.430	-0.122	-0.00903	2.38	mg/L
	Mg	24	3179.142	2.044	-0.001	-0.00010	86.69	mg/L
	K	39	678092.755	4.706	-0.237	-0.01027	166.99	mg/L
	Ca	44	19070.747	3.877	-0.006	-0.00831	162.05	mg/L
	Fe	54	27007.000	3.584	0.012	0.00643	99.42	mg/L
L>	Sc-1	45	118546.262	2.174	118546.262			mg/L
	Kr	83	81.112	11.863	-1.667			mg/L

Sample ID: SEQ-CRL

Report Date/Time: Tuesday, December 10, 2013 10:51:26

	A malusta	Mass	00 044 0/ Danasana	QO Calculate		D'I (I 0/ D')	D D I 0/ D'
Г.	Analyte Li	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Be	6 9	146.038	93.597			
L F	Al	27	94.138				
>	Sc	45	94.130	97.565			
	V .	51	106.245	97.303			
í	Cr	52	91.573				
i	Mn	55	109.373				
i	Со	59	102.619				
i	Ni	60	96.765				
i	Cu	65	87.549				
Ī	Zn	66	100.430				
j >	Ge	72		99.350			
j	As	75	111.502				
Ĺ	Se	82	144.271		•		
	Υ	89		•			
Γ	Мо	98	103.635				
1	Ag	107	99.895		·		
	Ag	109	95.509				
	Cd	111	96.727				
1	Cd	114	· •				
>	In	115		107.615			
L	Sb	121	101.213				
Ţ	Ва	135	100.863				
>	Tb	159		103.855			
ĺ	Но	165					
	TI	205	74.403				
ĺ	Pb	208	100.629				
	Bi	209	04.704				
	Th	232	84.704				
L	U	238	95.474			•	
	Na	23					
1	Mg K	24 39					
1	Ca	39 44		•			
1	Fe	54					
>	Sc-1	45					
L>	Kr	83					

Sample ID: SEQ-IFA

Sample Date/Time: Tuesday, December 10, 2013 10:53:07

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-IFA.46474

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8086.906	5.593	8086.906			ug/L
L	Be	9	5.000	33.333	-0.000	-0.05444	53.51	ug/L
Γ	Al	27	16707227.814	8.571	132.417	9366.01324	4.99	ug/L
>	Sc	45	126214.788	8.047	126214.788			ug/L
1	V	51	-2645.776	28.249	0.002	0.05681	414.98	ug/L
1	Cr	52	7665.255	2.290	0.009	0.35721	46.16	ug/L
	Mn	55	3976.645	8.551	0.017	0.43777	21.79	ug/L
	Co	59	153.891	7.211	0.001	0.02450	1.40	ug/L
	Ni	60	53.186	108.609	-0.000	-0.02100	299.42	ug/L
L	Cu	65	1101.764	6.889	0.007	0.80140	16.16	ug/L
Γ	Zn	66	1433.498	4.952	0.010	1.72016	5.76	ug/L
>	Ge	72	85447.903	3.760	85447.903			ug/L
	As	75	-292.197	22.328	-0.000	-0.01311	542.10	ug/L
L	Se	82	29.889	70.714	-0.000	-0.01359	2052.53	ug/L
	Υ	89	32.222	16.627	3.333			ug/L
Γ	Мо	98	400245.657	0.942	1.436	202.00223	2.44	ug/L
	Ag	107	36.111	22.767	0.000	0.00426	65.15	ug/L
	Ag	109	42.222	9.116	0.000	0.00802	14.75	ug/L
1	Cd	111	83.515	63.050	0.000	0.10635	69.93	ug/L
1	Cd	114	712.716	6.409	0.002	0.42128	5.39	ug/L
>	In	115	278753.303	1.572	278753.303			ug/L
L	Sb .	121	228.338	6.363	0.001	0.07280	10.74	ug/L
Γ	Ва	135	83.889	6.387	0.000	0.13668	9.48	ug/L
>	Tb	159	210874.793	1.044	210874.793			ug/L
-	Но	165	6.667	43.301	-0.000			ug/L
. 1	TI	205	29.445	6.536	-0.000	-0.04165	3.07	ug/L
	Pb	208	306.670	8.541	0.001	0.06405	17.78	ug/L
-	Bi	209	177.225	7.998	0.001			ug/L
1	Th	232	66.111	1.456	0.000	0.01969	3.44	ug/L
L	U	238	16.667	20.000	0.000	0.00435	33.78	ug/L
Γ	Na	23	15752505.692	2.183	125.129	9.28927	7.70	mg/L
}	Mg	24	9766089.435	3.376	77.538	9.14389	4.59	mg/L
	K	39	30287977.190	3.295	234.859	10.19119	7.55	mg/L
	Ca	44	926069.765	2.038	7.206	9.93386	9.46	mg/L
1	Fe	54	2321987.353	1.835	18.241	9.82491	6.18	mg/L
L>	Sc-1	45	126214.788	8.047	126214.788			mg/L
	Kr	83	102.223	12.664	19.445			mg/L

Sample ID: SEQ-IFA

Report Date/Time: Tuesday, December 10, 2013 10:54:43

Page 1

					~ · · · · · · · · · · · · · · · · · · ·	, varaoc		
ı	>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 105.670	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
	>	Be	9		103.070			
í I	=	.AI	. 27	93.660			•	
. /	>	Sc	45	93.000	103.877			
1	_	V	51		103.077			
j		Cr	52					
j		Mn	55					
i		Со	59					
i		Ni	60					
į		Cu	65					
Ī		Zn	66		•			
- 1	>	Ge	72		105.683			
1		As	75					
L	-	Se	82					
		Υ	,89					
Γ	•	Мо	98	101.001				
		Ag	107					
- [Ag	109		•			
-		Cd	111					
- 1		Cd	114					
ļ		In O	115		99.928			
Ļ		Sb	121					
		Ва	135		02.550			
[Tb Ho	159 165		93.552			
1		TI	205					
1		Pb	208					
1		Bi	209					
ì		Th	232			•		
· i		U	238					
Ē		Na	23	92.893				
j		Mg	24	91.439				
j		K	39	101.912				
1		Са	44	99.339				
		Fe	54	98.249	•			
L:		Sc-1	45					
		Kr	83					

Sample ID: SEQ-IFB

Sample Date/Time: Tuesday, December 10, 2013 10:56:24

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-IFB.46475

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
/>	Li	6	8110.267	4.905	8110.267			ug/L
L	Ве	9	5.000	57.735	-0.000	-0.05305	102.37	ug/L
Γ.,	Al	27	15748088.532	6.855	122.167	8641.02777	4.72	ug/L
>	Sc	45	128799.545	2.103	128799.545			ug/L
	V	51	-5850.407	20.403	-0.023	-0.81409	41.08	ug/L
-	Cr	52	68367.492	4.933	0.478	19.62989	3.23	ug/L
	Mn	55	95256.122	3.538	0.724	19.17487	3.07	ug/L
	Co	59	86527.443	7.231	0.671	18.94123	5.12	ug/L
	Ni	60	18425.681	4.745	0.142	18.73097	5.11	ug/L
L	Cu	65	22182.732	6.260	0.171	19.22331	8.02	ug/L
Γ	Zn	66	11773.332	6.473	0.133	22.28968	7.09	ug/L
>	Ge	72	84642.613	3.799	84642.613			ug/L
	As	75	14895.712	3.114	0.180	20.32304	5.75	ug/L
L	Se	82	19.000	56.469	-0.000	-0.15112	103.10	ug/L
	Υ	89	40.556	17.110	11.667			ug/L
Γ	Мо	98	390807.266	1.937	1.412	198.72963	3.32	ug/L
1	Ag	107	58304.132	2.497	0.211	19.48679	2.53	ug/L
	Ag	109	55375.081	4.276	0.200	19.18747	5.15	ug/L
}	Cd	111	13798.566	2.625	0.050	19.75987	5.63	ug/L
	Cd	114	31071.707	0.983	0.112	19.80474	3.75	ug/L
>	In	115	276745.571	3.061	276745.571			ug/L
L	Sb	121	170.558	10.984	0.000	0.04735	22.90	ug/L
Γ	Ва	135	59.445	16.428	0.000	0.09052	23.72	ug/L
>	Tb	159	203139.027	0.346	203139.027			ug/L
	Ho	165	8.333	52.915	-0.000			ug/L
	TI	205	18.889	44.411	-0.000	-0.04729	10.49	ug/L
1	Pb	208	227.224	0.424	0.000	0.03416	1.60	ug/L
	Bi	209	176.114	3.324	0.001			ug/L
-	Th	232	35.556	9.758	0.000	0.00655	24.51	ug/L
L	U	238	3.889	24.744	-0.000	-0.00119	36.19	ug/L
Γ	Na	23	14935332.381	5.863	115.848	8.60024	6.91	mg/L
	Mg	24	9222164.395	3.754	71.561	8.43909	2.15	mg/L
	K	39	31447140.313	6.333	238.075	10.33071	4.73	mg/L
	Ca	44	995754.403	4.907	7.570	10.43597	6.82	mg/L
	Fe	54	2470063.050	1.983	18.971	10.21818	3.89	mg/L
<u>_</u> >	Sc-1	45	128799.545	2.103	128799.545			mg/L
	Kr	83	103.334	8.980	20.556			mg/L

Sample ID: SEQ-IFB

Report Date/Time: Tuesday, December 10, 2013 10:58:00

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
[>	Li	6	45 5th 70 11000101y	105.975	opino 70 recovery	Bliddion 70 Bill	Dup. IXCI. 70 DIII
ĺ	Ве	9					
Ī	Al	27	86.410				
>	Sc	45		106.004			
	V	51		•			
	Cr	52	98.149				
	Mn .	55	95.874				
	Co	59	94.706				
	Ni	60	93.655				
L	Cu	65	96.117				
Γ	Zn	66	111.448				
>	Ge	72		. 104.687			
	As	75	101.615				
L	Se	82					
	Υ	89					
	Мо	98	99.365				
	Ag	107	97.434				
	Ag	109	95.937				
	Cd	111	98.799				
-	Cd	114					
>	ln •	115		99.208			
Ĺ	Sb	121					
	Ba	135					
>	Tb	159		90.120		•	
	Ho	165		•			
	TI	205					
1	Pb B:	208					
İ	Bi Th	209					
	Th U	232					
L	Na	238 23	86.002				
	Mg	24	84.391				
	K	39	103.307				
	Ca	44	104.360				
	Fe	54	102.182			•	
 ->	Sc-1	45	102.102				
L/	Kr	83					
						•	

Sample ID: 1312040-BLK1

Sample Date/Time: Tuesday, December 10, 2013 10:59:42

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\1312040-BLK1.46476

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	7739.236	3.127	7739.236			ug/L
L	Ве	9	6.111	41.660	-0.000	-0.03162	138.00	ug/L
Γ	Al	27	3336.465	18.146	0.006	0.42680	61.20	ug/L
>	Sc	45	126561.237	4.324	126561.237			ug/L
	V	51	-1839.443	15.517	0.008	0.28846	34.43	ug/L
1	Cr	52	6455.563	6.386	-0.001	-0.04952	238.27	ug/L
	Mn	55	1817.479	28.391	-0.001	-0.01577	792.90	ug/L
	Co	59	48.889	1.968	0.000	0.00098	36.34	ug/L
	Ni	60	62.995	10.894	-0.000	-0.01401	69.70	ug/L
L	Cu	65	1361.815	6.383	0.009	1.02318	3.69	ug/L
Γ	Zn	66	242.783	10.121	-0.004	-0.61561	5.50	ug/L
>	Ge	. 72	84220.274	3.731	84220.274			ug/L
	As	75	-100.016	284.837	0.002	0.24509	157.14	ug/L
L	Se	82	14.778	135.365	-0.000	-0.21364	127.39	ug/L
	Υ	89	26.667	21.651	-2.222			ug/L
Γ	Мо	98	1784.230	12.759	0.006	0.81196	12.39	ug/L
	Ag	107	22.778	8.449	-0.000	-0.00010	583.84	ug/L
	Ag	109	23.889	4.028	0.000	0.00181	28.61	ug/L
	Cd	111	4.525	82.825	-0.000	-0.00581	94.89	ug/L
	Cd	114	24.360	69.734	-0.000	-0.01426	75.64	ug/L
>	ln	115	276001.647	2.179	276001.647			ug/L
L	Sb	121	58.334	22.678	-0.000	-0.00394	160.06	ug/L
Γ	Ва	135	5.000	88.192	-0.000	-0.02741	33.56	ug/L
>	Tb	159	213283.636	2.135	213283.636			ug/L
	Ho	165	8.889	60.273	-0.000			ug/L
	Ti	205	7.778	44.607	-0.000	-0.05411	3.44	ug/L
	Pb	208	140.556	7.148	-0.000	-0.00672	57.55	ug/L
1	Bi	209	10.000	0.000	-0.000			ug/L
1	Th	232	10.000	0.000	-0.000	-0.00560	1.68	ug/L
L	U	238	3.333	86.603	-0.000	-0.00153	78.81	ug/L
Γ	Na	23	7165.894	21.129	-0.119	-0.00881	8.18	mg/L
	Mg	24	3783.375	10.393	0.002	0.00026	88.09	mg/L
	K	39	693019.040	0.364	-0.480	-0.02082	50.01	mg/L
	Ca	44	20375.957	2.934	-0.006	-0.00820	74.41	mg/L
	Fe	54	29122.303	14.722	0.013	0.00726	184.47	mg/L
L>	Sc-1	45	126561.237	4.324	126561.237			mg/L
	Kr	83	98.890	15.660	16.111			mg/L

Sample ID: 1312040-BLK1

Report Date/Time: Tuesday, December 10, 2013 11:01:18

Page 2

					QC Calculated	i vaiues		
Г	· >	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 101.127	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
1	>	Be	9		101.127			
L		Al	27					
1	>	Sc	45		104.162			
1	_	V	51		104.102			
1		Cr	52					
i		Mn	55	,				
i		Со	59					
ĺ		Ni	60					
i		Cu	65					
Ī		Zn	66					
1:	>	Ge	72		104.165			
		As	75					
1		Se	82					
		Υ	89					
Γ		Мо	98					
		Ag	107				,	
ļ		Ag	109					
		Cd	111					
		Cd	114					
>		In	115		98.942			
Ļ		Sb	121					
		Ba	135		04.000			
>		Tb	159		94.620			
- 1		Ho Tl	165 205					
1		Pb	208					
1		Bi	209					
		Th	232					
		U	238					
ŗ		Na	23	•				
i		Mg	24					
İ		K	39					
İ.		Ca	44					
ĺ		Fe	54					
L>		Sc-1	45					
		Kr	83					

Sample ID: C131107-04

Sample Date/Time: Tuesday, December 10, 2013 11:02:44

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-04.46477

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8044.623	3.814	8044.623			ug/L
L	Be	9	3.889	49.487	-0.001	-0.07361	42.67	ug/L
Γ	Αl	27	21787.444	5.978	0.145	10.28015	3.31	ug/L
>	Sc	45	131680.916	6.928	131680.916			ug/L
	V	51	4392.780	28.737	0.056	2.00076	16.13	ug/L
1	Cr	52	24109.952	8.152	0.132	5.40500	17.57	ug/L
1	Mn	55	45280.218	3.262	0.329	8.71888	4.82	ug/L
1	Со	59	457.795	4.610	0.003	0.08834	4.68	ug/L
1	Ni	60	22.106	675.311	-0.000	-0.05222	283.95	ug/L
L	Cu	65	733.376	5.208	0.004	0.44226	15.85	ug/L
Γ	Zn	66	840.056	2.381	0.004	0.63024	0.67	ug/L
>	Ge	72	81626.459	2.514	81626.459			ug/L
1	As	75	-57.424	242.927	0.003	0.29528	64.24	ug/L
L	Se	82	35.334	61.321	0.000	0.09561	343.43	ug/L
	Υ	89	439.460	3.742	410.571			ug/L
Γ	Мо	98	1786.572	3.152	0.006	0.81327	5.70	ug/L
	Ag	107	40.000	11.024	0.000	0.00566	30.07	ug/L
	Ag	109	35.000	19.048	0.000	0.00565	41.02	ug/L
	Cd	111	22.337	32.079	0.000	0.01972	53.89	ug/L
1	Cd	114	70.089	24.088	0.000	0.01505	78.78	ug/L
>	In	115	276516.958	2.247	276516.958			ug/L
Γ.	Sb	121	323.897	4.891	0.001	0.11724	6.47	ug/L
Γ	Ва	135	26971.425	2.313	0.128	56.27789	1.29	ug/L
>	Tb	159	210031.265	3.507	210031.265			ug/L
	Но	165	8.889	57.282	-0.000			ug/L
	TI	205	37.778	20.849	-0.000	-0.03689	10.29	ug/L
	Pb	208	178.334	15.970	0.000	0.01018	112.38	ug/L
	Bi	209	8.889	60.273	-0.000		•	ug/L
	Th	232	28.333	15.563	0.000	0.00271	58.46	ug/Ĺ
L	U	238	572.248	5.695	0.003	0.24912	4.34	ug/L
Γ	Na	23	3425978.638	0.765	25.931	1.92508	7.45	mg/L
1	Mg	24	4808323.753	1.027	36.584	4.31427	5.73	mg/L
1	K	39	2251368.235	5.623	11.212	0.48653	16.62	mg/L
1	Са	44	3056204.005	2.480	23.136	31.89349	8.88	mg/L
1	Fe	54	26498.733	8.654	-0.014	-0.00735	205.55	mg/L
_>	Sc-1	45	131680.916	6.928	131680.916			mg/L
	Kr	83	104.445	12.188	21.667			mg/L

Sample ID: C131107-04

Report Date/Time: Tuesday, December 10, 2013 11:04:20

				QO Odicalatet	i values		
г	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>		6		105.117			
Ļ	Ве	9					
1	Al	27					
>		45		108.375			
	٧	51					
	Cr	52					
	Mn	55 50					
-	Co	59			•		
-	Ni	60					
Ļ	Cu .	65					
}	Zn	66 70		400.057			
>		72 75		100.957			
- 1	As Se	75 82					
L	Y	89					•
Г	Мо	98					
	Ag	107					
-	Ag Ag	107					
	Cd	111					
- 1	Cd	114					
>	In	115		99.127			
	Sb	121		00.121			
Ė.	Ва	135				•	
>	Tb	159		93.177		4	
ĺ	Но	165		001111			
i	TI	205					
i	Pb	208					
j	Bi	209					
j	Th	232					
Ĺ	U	238					
Γ	Na	23					
	Mg	24					
	K	39					•
	Ca	44				•	
	Fe	54					
_>	Sc-1	45					
	Kr	83					

Sample ID: 1312040-DUP1

Sample Date/Time: Tuesday, December 10, 2013 11:05:47

Sample Type: Duplicate of 2

Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\1312040-DUP1.46478

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8440.144	3.285	8440.144			ug/L
L	Be	9	5.556	17.321	-0.000	-0.04917	28.54	ug/L
Γ	Al	27	21730.496	1.641	0.139	9.80508	9.81	ug/L
>	Sc	45	137320.901	6.635	137320.901			ug/L
	V	51	4458.790	30.456	0.056	1.99224	22.49	ug/L
1.	Cr	52	25840.572	3.393	0.137	5.60686	12.27	ug/L
1	Mn	55	46831.198	5.381	0.326	8.63243	1.98	ug/L
	Co	59	460.017	15.428	0.003	0.08442	12.79	ug/L
	Ni	60	-133.750	87.334	-0.002	-0.20730	51.49	ug/L
L	Cu	65	778.937	4.591	0.004	0.45199	8.06	ug/L
Γ	Zn	66	823.943	4.264	0.003	0.50042	9.15	ug/L
>	Ge	72	86559.063	3.405	86559.063			ug/L
	As	75	61.660	112.297	0.004	0.45302	19.90	ug/L
L	Se	82	49.112	32.975	0.000	0.25288	92.14	ug/L
	Υ	89	427.237	6.873	398.348			ug/L
Γ	Мо	98	1534.458	5.412	0.005	0.67840	6.54	•
1	Ag	107	20.000	25.000	-0.000	-0.00109	157.27	ug/L
	Ag	109	20.556	12.385	0.000	0.00058	143.99	ug/L
	Cd	111	25.882	45.067	0.000	0.02460	69.10	ug/L
	Cd	114	46.330	34.718	-0.000	-0.00037	2915.41	ug/L
>	In	115	278716.067	2.249	278716.067			ug/L
Ŀ	Sb	121	226,671	5.147	0.001	0.07196	4.61	ug/L
	Ва	135	25997.292	0.699	0.127	55.87497	0.88	ug/L
>	Tb	159	203863.061	1.527	203863.061			ug/L
-	Но	165	12.778	30.123	0.000			ug/L
	TI	205	34.445	24.830	-0.000	-0.03808	13.88	ug/L
-	Pb	208	141.667	5.128	-0.000	-0.00348	112.82	ug/L
	Bi	209	6.111	31.492	-0.000			ug/L
	Th	232	15.556	6.186	-0.000	-0.00282	11.97	ug/L
Ĺ	U	238	582.249	2.882	0.003	0.26134	3.18	ug/L
	Na	23	3423527.957	3.800	24.797	1.84090	4.43	mg/L
	Mg	24	5084459.902	3.611	37.050	4.36922	3.14	mg/L
	K	39	2401782.646	6.216	11.631	0.50470	20.08	mg/L
!	Ca	44	3177295.153	4.995	22.997	31.70177	3.68	mg/L
	Fe	54	26434.867	15.525	-0.024	-0.01293	86.03	mg/L
L>	Sc-1	45	137320.901	6.635	137320.901			mg/L
	Kr	83	115.001	15.676	32.223			mg/L

Sample ID: 1312040-DUP1

Report Date/Time: Tuesday, December 10, 2013 11:07:22

				QO Calculate	a values		
[:	Analyte ⊳ Li	Mass 6	QC Std % Recovery	Int Std % Recovery 110.285	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
i	Ве	9					39.803
Ī	ΑI	27					4.731
į:	→ Sc	45		113.017			
	V	51					0.427
	Cr	52					3.666
	Mn	55					0.996
	. Co	59					4.544
	Ni	60					119.508
L	Cu	65			•		2.177
Γ	Zn	66					22.963
>		72		107.057			
	As	75					42.160
L	Se	82			•		90.257
_	Υ	89					
Γ	Мо	98					18.083
	Ag	107					294.973
	Ag	109					162.998
	Cd	111					22.039
	Cd	114					210.022
>		115		99.915			
Ĺ	Sb	121					47.866
ļ	Ba	135					0.719
>		159		90.441			
-	Ho 	165					i
-	TI	205					3.169
	Pb	208	•		•		408.266
	Bi Ti	209					40044.000
	Th	232					10014.090
L	U N -	238	•				4.787
l	Na Ma	23				•	4.471
	Mg	24					1.265
1	K Ca	39					3.666
1	Ca Fe	44 54					0.603
 	re Sc-1	54 45					55.012
_>	Sc-1 Kr	45 83					
	L/I	၀၁					

Sample ID: SEQ-SRD1 @5X

Sample Date/Time: Tuesday, December 10, 2013 11:08:49

Sample Type: Dilution - DF:5 of 2

Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-SRD1 @5X.46479

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8454.611	4.339	8454.611			ug/L
L	Be	9	2.222	43.301	-0.001	-0.10274	16.99	ug/Ľ
Γ	Αl	27	6522.871	10.502	0.030	2.14856	18.87	ug/L
>	Sc	45	129118.326	5.578	129118.326			ug/L
- [V	51	-354.099	119.773	0.020	0.71197	16.80	ug/L
	Cr	52	10406.461	6.772	0.028	1.16743	19.40	ug/L
-	Mn	55	11046.417	8.812	0.071	1.86670	10.22	ug/L
	Co	59	121.668	10.959	0.001	0.01661	8.65	ug/L
	Ni	60	-0.298	4469.568	-0.001	-0.08018	16.52	ug/L
L	Cu	65	210.004	1.587	-0.000	-0.00435	271.42	ug/L
Γ	Zn	66	402.235	4.978	-0.002	-0.31373	8.27	ug/L
>	Ge	72	86040.941	3.681	86040.941			ug/L
	As	75	-26.853	395.739	0.003	0.33405	41.89	ug/L
L	Se	82	33.223	4.055	0.000	0.03577	54.49	ug/L
	Υ	89	102.223	8.206	73.334			ug/L
Γ	Мо	98	542.565	5.581	0.001	0.17483	12.04	ug/L
	Ag	107	22.222	30.311	-0.000	-0.00048	401.76	ug/L
	Ag	109	18.889	18.368	-0.000	-0.00008	1179.14	ug/L
}	Cd	111	9.881	18.477	0.000	0.00148	147.13	ug/L
	Cd	114	30.497	75.707	-0.000	-0.01086	130.52	ug/L
>	In	115	281721.539	3.540	281721.539			ug/L
L	Sb	121	177.780	13.303	0.000	0.04930	27.09	ug/L
Γ	Ва	135	5441.257	1.010	0.026	11.60631	0.34	ug/L
>	Tb	159	204872.890	1.216	204872.890			ug/L
	Но	165	8.333	20.000	-0.000			ug/L
	TI	205	26.111	45.285	-0.000	-0.04308	16.43	ug/L
	Pb	208	140.001	18.898	-0.000	-0.00459	241.54	ug/L
1	Bi	209	7.778	32.733	-0.000			ug/L
	Th	232	7.778	53.927	-0.000	-0.00644	30.69	ug/L
L	U	238	114.445	1.682	0.001	0.04872	0.52	ug/L
Γ	Na	23	729242.927	1.278	5.485	0.40717	6.03	mg/L
	Mg	24	1049090.435	3.199	8.105	0.95580	2.71	mg/L
1	K	39	1046747.704	3.951	2.160	0.09375	25.20	mg/L
	Ca	44	608902.123	3.068	4.556	6.28013	4.81	mg/L
	Fe	54	29779.732	6.133	0.015	0.00802	100.53	mg/L
L>	Sc-1	45	129118.326	5.578	129118.326			mg/L
	Kr	83	93.890	19.554	11.111			mg/L

Sample ID: SEQ-SRD1 @5X

Report Date/Time: Tuesday, December 10, 2013 11:10:25

				Q o o a loa la loa	rarace		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 110.474	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
Ĺ	Be	9		110.171		-597.920	
ř	Al	27				4.501	
>	Sc	45		106.266		4.001	
	V	51		100.200		77.925	,
i	Cr	52				7.996	
i	Mn	55				7.049	
i	Со	59	•			6.000	
İ	Ni	60				-667.647	
İ	Cu	65				104.919	
Ī	Zn	66				348.897	
İ>	Ge	72		106.416		•	
i i	As	75				465.650	
Ĺ	Se	82				87.059	
_	Υ	89					
Γ	Mo	98				7.486	
	Ag	107				142.588	
	Ag	109				107.429	
.	Cd	111				62.441	
	Cd	114				460.612	
>	ln	115	,	100.992	·		
L	Sb	121				110.238	
Γ	Ва	135				3.116	
>	Tb	159		90.889			
	Но	165					
	TI	205				-483.803	
	Pb	208				325.657	
	Bi	209					
	Th	232				1288.465	
L	U	238				2.213	
Γ	Na	23				5.755	
	Mg	24				10.772	
	K	39				3.660	
-	Ca	44				1.545	
	Fe	54				-645.644	•
<u>_</u> >	Sc-1	45					
	Kr	83					

Sample ID: 1312040-BS1

Sample Date/Time: Tuesday, December 10, 2013 11:11:51

Sample Type: Spike - 3 of 1

Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\1312040-BS1 .46480

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8089.681	3.789	8089.681			ug/L
Ĺ	Ве	9	5287.240	5.388	0.652	89.35655	1.61	ug/L
	Al	27	17013060.126	3.807	134.526	9515.18663	2.69	ug/L
>	Sc	45	126468.899	3.568	126468.899			ug/L
	V	51	320049.193	5.126	2.553	91.33279	3.51	ug/L
	Cr	52	283424.275	6.092	2.191	89.92126	7.77	ug/L
1	Mn	55	453514.882	3.144	3.571	94.51810	0.48	ug/L
1	Со	59	387596.500	5.232	3.064	86.49940	3.60	ug/L
1	Ni	60	83802.142	4.061	0.663	87.12981	6.17	ug/L
L	Cu	65	98723.378	4.198	0.780	87.82449	6.65	ug/L
ſ	Zn	66	53306.363	0.470	0.607	101.98613	3.68	ug/L
>	Ge	72	86991.316	4.074	86991.316	, (ug/L
	As	75	72184.223	4.049	0.834	94.40260	5.07	ug/L
L	Se	82	36265.245	4.857	0.418	491.27800	8.83	ug/L
	Υ ,	89	73.334	25.613	44.445			ug/L
Γ	Мо	98	183871.851	2.529	0.666	93.65653	3.33	ug/L
	Ag	107	288724.717	0.712	1.046	96.75998	1.76	ug/L
	Ag	109	267886.394	1.942	0.971	93.05670	3.29	ug/L
	Cd	111	65969.209	2.878	0.239	94.69482	4.56	ug/L
	Cd	114	148481.883	1.630	0.538	94.96192	3.60	ug/L
>	In	115	276059.783	1.962	276059.783			ug/L
L	Sb	121	209499.938	2.679	0.759	95.80180	3.40	ug/L
Γ	Ва	135	46055.261	2.768	0.221	97.07944	3.57	ug/L
>	Tb	159	207953.967	1.409	207953.967			ug/L
	Но	165	3.333	0.000	-0.000			ug/L
	TI	205	167867.320	2.065	0.807	97.16187	0.74	ug/L
	Pb	208	223184.883	0.586	1.073	95.39895	1.31	ug/L
	Bi	209	30.556	15.746	0.000			ug/L
1	Th	232	214234.514	1.830	1.030	97.69253	0.82	ug/L
L	U	238	211496.480	1.217	1.017	94.10744	1.14	ug/L
Γ	Na	23	16258636.436	2.134	128.549	9.54314	5.53	mg/L
	Mg	24	10367609.525	4.479	81.966	9.66605	3.65	mg/L
1	K	39	30909921.364	9.498	238.590	10.35308	10.10	mg/L
	Са	44	1001059.826	1.985	7.757	10.69278	4.80	mg/L
-	Fe	54	2486564.028	3.995	19.479	10.49148	7.43	mg/L
L>	Sc-1	45	126468.899	3.568	126468.899			mg/L
	Kr	83	109.445	5.765	26.667			mg/L

Sample ID: 1312040-BS1

Report Date/Time: Tuesday, December 10, 2013 11:13:27

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
Γ>		6		105.706			
L	Be	9			89.388		
Γ	Αl	27			95.148		
>		45		104.086			
	V	51			91.044		
	Cr	52			89.971		
	Mn	55			94.534		
	Co	59			86.498		
	Ni	60			87.144		
L	Cu	65			86.801	•	
Γ	Zn	66					
>	Ge	72		107.592			
	As	75			94.158		
L	Se	82			98.298		•
	Υ	. 89					
Γ	Мо	98			92.845		
	Ag	107		•	96.760		
	Ag	109			93.055		
	Cd	111			94.701		
	Cd	114					
>	In	115		98.963			49
L	Sb	121			95.806		
Γ	Ва	135			97.107		
>	Τþ	. 159		92.256			
	Но	165					
	TI	205			97.216		
ļ	Pb	208			95.406		
	Bi	209				•	
	Th	232			97.698		
Ē	U	238			94.109		
	Na	23		•	95.519		
	Mg	24			96.658		
	K	39			103.739		
-	Ca	44			107.010		
-	Fe	54			104.842		
_>	Sc-1	45					
	Kr	83					

Sample ID: 1312040-MS1

Sample Date/Time: Tuesday, December 10, 2013 11:14:54

Sample Type: Spike - 3 of 2

Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\1312040-MS1.46481

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8052.965	2.666	8052.965			ug/L
L	Be	9	5067.610	2.917	0.629	86.14028	5.30	ug/L
Γ	Al	27	15982241.396	2.872	126.250	8929.79513	2.96	ug/L
>	Sc	45	126602.181	2.613	126602.181			ug/L
	V	51	325598.756	6.242	2.595	92.83636	6.35	ug/L
	Cr	52	277609.690	7.201	2.144	87.96120	9.61	ug/L
	Mn	55	482512.776	0.112	3.798	100.51814	2.71	ug/L
	Co	59	382656.849	1.591	3.023	85.33077	1.27	ug/L
	Ni	60	81662.623	6.994	0.645	84.82084	9.01	ug/L
L	Cu	65	99820.438	11.488	0.789	88.79852	14.02	ug/L
	Zn	66	52788.787	9.177	0.616	103.58284	7.77	ug/L
>	Ge	72	84686.152	2.082	84686.152			ug/L
	As	75	69853.293	3.306	0.828	93,75184	1.81	ug/L
L	Se	82	38752.422	3.816	0.457	538.02350	3.36	ug/L
	Υ	89	449.461	10.660	420.572			ug/L
Γ	Мо	98	180140.367	2.327	0.659	92.75236	3.42	ug/L
	Ag	107	281805.355	1.721	1.032	95.47035	2.83	ug/L
	Ag	109	267382.016	2.236	0.979	93.88515	3.40	ug/L
	Cd	- 111	66298.552	3.857	0.243	96.21820	5.78	ug/L
ľ	Cd	114	145270.857	3.318	0.532	93.92856	5.10	ug/L
>	In	115	273105.861	1.996	273105.861			ug/L
L	Sb	121	206440.987	1.969	0.756	95.43592	3.45	ug/L
Γ	Ва	135	71276.935	1.047	0.351	154.03327	1.73	ug/L
>	Tb	159	202836.743	0.699	202836.743			ug/L
	Но	165	17.778	37.889	0.000			ug/L
	TI	205	167383.116	1.327	0.825	99.33343	1.21	ug/L
	Pb	208	216256.880	1.710	1.066	94.76929	2.41	ug/L
	Bi	209	18.333	45.455	0.000			ug/L
	Th	232	205120.678	1.846	1.011	95.89977	1.83	ug/L
	U	238	205361.069	0.615	1.012	93.67961	0.83	ug/L
Γ	Na	23	18402572.091	2.998	145.321	10.78821	5.51	mg/L
	Mg	24	14320114.571	1.714	113.142	13.34255	3.42	mg/L
	K	.39	30787410.096	7.749	237.338	10.29876	8.52	mg/L
	Ca	44	3873169.048	4.057	30.459	41.98886	6.46	mg/L
	Fe	54	2360342.883	5.203	18.450	9.93725	7.46	mg/L
<u>_</u> >	Sc-1	45	126602.181	2.613	126602.181			mg/L
	Kr	83	131.668	7.700	48.890			mg/L

Sample ID: 1312040-MS1

Report Date/Time: Tuesday, December 10, 2013 11:16:30

				Q 0 0 0 0 0 0			
_	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Li -	6		105.226	00.044		
Ĺ	Ве	9			86.214		
	Al	27			89.195		
>	Sc	45		104.196			
	Λ .	51			90.836		
	Cr	52			82.556		
	Mn	55			91.799		
	Co	59			85.242		
	Ni	60			84.873		
L	Cu	65			88.356		
Γ	Zn	66					•
>	Ge	72		104.741			
-	As	75			93.457		
Ĺ	Se	82			107.586	•	
_	Υ	89			•		
Γ	Мо	98			91.939		
i	Ag	107			95.465		
i	Ag	109			93.880		
i	Cd	111			96.198		
i	Cd	114					
>	ln	115		97.904		•	
ĺ	Sb	121			95.319		
ř	Ва	135			97.755		
>	Tb	159	,	89.986			•
l'	Но	165					
i	TI	205			99.370		
i	Pb	208			94.759		
	Bi	209			•		
i	Th	232			95.897		
	U	238			93.430		
Ļ	Na	23			88.631		
- 1	Mg	24			90.283		
	K	39			98.122		
	Ca	44			100.954		
	Fe	54			99.446		
 	Sc-1	45		·			
<u>_</u> >	Kr	83					
	r\i	03					

Sample ID: C131107-07

Sample Date/Time: Tuesday, December 10, 2013 11:17:57

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-07.46482

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8151.981	2.310	8151.981			ug/L
L	Be	9	4.444	43.301	-0.000	-0.06418	52.61	ug/L
Γ	Al	27	15908.009	2.967	0.098	6.90113	5.97	ug/L
>	Sc	45	135219.661	4.614	135219.661			ug/L
	V	51	3764.331	8.254	0.051	1.81081	7.22	ug/L
	Cr	52	22677.762	3.176	0.116	4.75330	10.65	ug/L
	Mn	55	247300.140	6.011	1.814	48.01566	4.66	ug/L
	Co	59	586.695	14.128	0.004	0.11300	18.61	ug/L
	Ni	60	-339.032	62.516	-0.003	-0.40863	49.17	ug/L
Ĺ	Cu	65	700.039	4.561	0.004	0.39635	12.12	ug/L
Γ	Zn	66	2230.399	7.585	0.020	3.43006	6.83	ug/L
>	Ge	72	82686.364	2.467	82686.364			ug/L
	As	75	32.427	344.042	0.004	0.41560	36.85	ug/L
L	Se	82	67.779	33.559	0.000	0.54263	56.11	ug/L
	Υ	89	367.789	8.908	338.900			ug/L
Γ	Мо .	98	2850.911	6.951	0.010	1.35601	3.35	ug/L
	Ag	107	81.112	20.989	0.000	0.01933	24.78	ug/L
1	Ag	109	68.334	29.572	0.000	0.01710	37.14	ug/L
	Cd	111	31.214	19.415	0.000	0.03249	28.06	ug/L
	Cd	114	76.781	19.699	0.000	0.01957	60.00	ug/L
>	In	115	275997.439	4.148	275997.439			ug/L
L	Sb	121	858.393	8.734	0.003	0.36170	7.03	ug/L
Γ	Ba	135	27356.965	0.576	0.134	58.64708	0.42	ug/L
>	Tb	159	204373.290	0.250	204373.290			ug/L
	Но	165	13.889	30.199	0.000			ug/L
1.	TI	205	57.222	12.126	-0.000	-0.02475	16.79	ug/L
	Pb	208	146.667	4.545	-0.000	-0.00149	199.49	ug/Ļ
	Bi	209	8.333	40.000	-0.000			ug/L
	Th	232	101.112	15.667	0.000	0.03686	19.80	ug/L
L	U	238	737.266	2.287	0.004	0.33084	2.53	ug/L
Γ	Na	23	3760275.655	4.563	27.653	2.05292	4.51	mg/L
	Mg	24	5398228.063	3.670	39.920	4.70766	3.31	mg/L
	K	39	2484113.240	0.503	12.438	0.53972	7.73	mg/L
.	Са	44	3624172.161	7.357	26.656	36.74584	7.38	mg/L
1	Fe	54	24358.313	15.462	-0.036	-0.01945	67.05	mg/L
L>	Sc-1	45	135219.661	4.614	135219.661			mg/L
	Kr	83	97.223	12.867	14.445			mg/L

Sample ID: C131107-07

Report Date/Time: Tuesday, December 10, 2013 11:19:33

					Q O Gardarato	i varaos		
ſ		Analyte Li	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
}	>		6		106.520			
L	_	Be Al	9					
i I		Sc	27 45	•	444 000			
. [>	V	51		111.288			
1		v Cr	52					
1		Mn .	55					
1		Co	59					
.		Ni	60					
i		Cu	65					
Ĺ	:	Zn	66					
ĺ	>	Ge	72		102.267	•		
		As	7,5		102.201			
i		Se	82					
_	•	Υ	89					
Γ		Мо	98					
i		Ag	107					
j		Ag	109					
İ		Cd	111					
ĺ		Cd	114					
		in	115		98.940			
L		Sb	121					
Γ		Ва	135					
		Tb	159		90.667	•		
		Но	165				•	
		TI	205					
1		Pb	208					
- [Bi	209					
-		Th	232					
Ē		U	238					
		Na	23					
-		Mg	24					
-		K	39					
		Са	44					
		Fe	54					
L		Sc-1	45					
		Kr	83					

Sample ID: 1312040-MS2

Sample Date/Time: Tuesday, December 10, 2013 11:21:01

Sample Type: Spike - 3 of 7

Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\1312040-MS2.46483

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8200.940	4.507	8200.940			ug/L
L	Ве	9	5069.278	2.749	0.618	84.61889	4.14	ug/L
Γ	Αl	. 27	15739441.488	5.433	123.657	8746.42557	1.92	ug/L
>	Sc	45	127242.874	4.607	127242.874			ug/L
	V	51	332797.503	6.712	2.640	94.42175	6.42	ug/L
	Cr	52	298546.267	1.572	2.296	94.22853	3.32	ug/L
	Mn	55	678106.208	6.757	5.312	140.57933	3.14	ug/L
	Co	59	386797.493	5.984	3.040	85.82628	4.87	ug/L
	Ni	60	82804.857	6.579	0.652	85.65173	9.40	ug/L
L	Cu	65	95027.812	4.223	0.746	84.00346	5.80	ug/L
Γ	Zn ,	66	52833.719	4.007	0.632	106.17818	2.76	ug/L
>	Ge	72	82811.413	4.866	82811.413			ug/L
	As	75	71446.862	4.914	0.867	98.15346	5.40	ug/L
L	Se	82	37282.237	6.783	0.451	530.11529	. 8.06	ug/L
	Υ	89	371.122	9.894	342.233			ug/L
Γ	Мо	98	175899.792	1.513	0.670	94.30815	3.07	ug/L
	Ag	107	274017.926	2.942	1.045	96.63186	2.18	ug/L
-	Ag	109	259477.961	2.612	0.990	94.88364	4.30	ug/L
1	Cd	111	63884.461	1.853	0.244	96.48956	2.68	ug/L
	Cd	114	141606.723	2.273	0.540	95.28647	2.21	ug/L
>	In	115	262280.770	1.727	262280.770			ug/L
L	Sb	121	199529.268	1.516	0.761	96.03650	2.80	ug/L
Γ	Ва	135	70611.682	1.258	0.363	159.26291	0.89	ug/L
>	Tb	159	194338.860	1.395	194338.860			ug/L
	Но	165	16.111	26.034	0.000			ug/L
	TI	205	156516.880	1.266	0.805	96.96813	2.65	ug/L
	Pb ·	208	209664.630	1.371	1.078	95.89043	0.81	ug/L
	Bi	209	17.778	23.593	0.000			ug/L
	Th	232	197839.290	0.947	1.018	96.55549	2.04	ug/L
L	U	238	199723.102	2.797	1.028	95.11739	3.86	ug/L
Γ	Na	23	18405826.952	3.101	144.567	10.73223	2.75	mg/L
	Mg	24	14062638.785	4.540	110.496	13.03051	0.97	mg/L
	K	39	32148881.098	4.225	247.085	10.72171	6.80	mg/L
	Ca	44	4362681.301	4.081	34.209	47.15750	8.51	mg/L
	Fe	54	2382835.191	2.209	18.531	9.98098	4.09	mg/L
_>	Sc-1	45	127242.874	4.607	127242.874			mg/L
	Kr	83	124.446	10.403	41.667			mg/L

Sample ID: 1312040-MS2

Report Date/Time: Tuesday, December 10, 2013 11:22:37

					Q.O. O.OO			
. г	->	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 107.160	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
i		Be	9			84.683		
_ [-	Al	27			87.395		
	>	Sc	45		104.723			
1		V	51			92.611		
		Cr	52			89.475		
i		Mn	55			92.564	•	
i		Со	59			85.713		
i		Ni	60			86.060		
i		Cu	65			83.607		
ř	-	Zn	66					
i	>	Ge	72		102.422			
i		As	75			97.738		
i		Se	82			105.915		
_	•	Υ	89					
Γ	-	Мо	98			92.952		
j		Ag	107			96.613		
i		Ag	109			94.867		
i		Cd	111			96.457		
ĺ		Cd	114					
ĺ	>	In	115		94.023			
Ĺ		Sb	121			95.675		
	•	Ва	135			100.616		
	>	Tb	159		86.216			
		Но	165					
		TI,	205			96.993		
		Pb	208			95.892		
		Bi	209					
		Th	232			96.519		
L	_	U	238			94.787		
		Na	23		•	86.793		
-		Mg	24			83.228		· · · · · · · · · · · · · · · · · · ·
		K .	39			101.820		
.		Ca	44			104.117		
		Fe	54			100.004		
L	>	Sc-1	45					
		Kr	83					

Sample ID: C131107-01 @10X

Sample Date/Time: Tuesday, December 10, 2013 11:24:04

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-01 @10X.46484

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

		Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc RSD	Sample Unit
Γ.		Li	6	8040.733	4.889	8040.733	Conc. Mean	Conc. Nob	ug/L
1		Be	9	6.111	15.746	-0.000	-0.03548	33.04	ug/L
F		Al	27	17682.206	1.990	0.114	8.09484	5.12	ug/L
		Sc	45	131422.950	3.547	131422.950	0.05404	5.12	ug/L
		V	51	-0.957	57515.364	0.023	0.80817	18.45	ug/L
		Cr	52	8881.864	2.369	0.015	0.63187	17.13	ug/L
		Mn	55	354519.231	1.864	2.684	71.02319	1.72	ug/L
i		Co	59	590.028	16.221	0.004	0.11674	17.08	ug/L
i		Ni	60	-74.553	147.130	-0.001	-0.15547	72.48	ug/L
-		Cu	65	322.786	4.300	0.001	0.08903	21.75	ug/L
F		Zn	66	762.269	3.390	0.003	0.43068	15.70	ug/L
į,		Ge	72	83767.863	2.536	83767.863			ug/L
ĺ		As	75	-101.472	196.368	0.002	0.23919	111.76	ug/L
i		Se	82	45.001	25.087	0.000	0.21400	74.95	ug/L
_		Y	89	431.126	1.243	402.237			ug/L
Γ		Мо	98	2728.324	10.102	0.009	1.27815	9.70	ug/L
i		Ag	107	64.445	9.083	0.000	0.01361	12.51	ug/L
i		Ag	109	76.112	15.841	0.000	0.01967	21.74	ug/L
i		Cď	111	33.751	25.180	0.000	0.03542	31.85	ug/L
Ì	. (Cd	114	90.105	17.283	0.000	0.02721	38.43	ug/L
į,	- 1	In .	115	279103.496	1.849	279103.496			ug/L
Ĺ	;	Sb	121	933.404	11.754	0.003	0.39103	10.66	ug/L
Γ	ı	Ва	135	2364.336	0.963	0.011	5.01232	1.33	ug/L
>	· -	Tb	159	205262.971	0.774	205262.971			ug/L
	. 1	Но	165	17.222	43.638	0.000			ug/L
	-	TI	205	58.889	18.414	-0.000	-0.02396	25.43	ug/L
	F	Pb	208	476.674	5.280	0.002	0.14120	7.28	ug/L
	E	Bi _.	209	8.889	28.641	-0.000			ug/L
		Th	232	122.779	19.640	0.000	0.04673	24.62	ug/L
L		U ·	238	607.807	6.584	0.003	0.27102	6.62	ug/L
Γ		Na	23	1976103.754	4.983	14.873	1.10417	6.23	mg/L
		Mg	24	1789412.047	0.757	13.597	1.60345	2.76	mg/L
		K	39	2563521.136	3.387	13.575	0.58904	9.76	mg/L
		Са	44	2339809.237	5.386	17.641	24.31885	5.05	mg/L
		Fe	54	31833.686	10.359	0.027	0.01429	108.20	mg/L
L>		Sc-1	45	131422.950	3.547	131422.950			mg/L
	ł	Kr	83	88.890	6.027	6.111			mg/L

Sample ID: C131107-01 @10X

Report Date/Time: Tuesday, December 10, 2013 11:25:41

Page 1

		. *		QO Odiodiaici	i varaes		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 105.066	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
L	Ве	9					
Γ	Al	27					
>	Sc	45		108.163			
1	V	51					
	Cr	52					
	Mn	. 55		•			
1	Co	59					
	Ni	60					
L	Cu	65					
Γ	Zn	66					
>	Ge	72		103.605			
!	As	75					
L	Se	82					
-	Y	89				•	
	Мо	98					
	Ag	107					
-	Ag	109					
1	Cd	111					
	Cd	114		400.054			
>	In Sb	115 121	· ·	100.054	•		
L	Ва	135					
>	Tb	159		91.062			
	Но	165		31.002			
.	TI	205					
i	Pb	208					
i i	Bi	209					
Ì	Th	232	•				
Ĺ	U	238					
Γ	Na	23					
	Mg	24					
	K	39					
	Ca	44					•
	Fe	54					
_>	Sc-1	45					
	Kr	83					

Sample ID: Blank

Sample Date/Time: Tuesday, December 10, 2013 11:27:08

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\Blank.46485

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
Γ>	Li	6	8230.983	5.515	8230.983			ug/L
ĺ	Ве	9	3.333	50.000	-0.001	-0.08369	34.22	ug/L
Ē	Al	27	2801.739	3.279	0.002	0.12844	69.94	ug/L
İ>	Sc	45	127308.545	4.486	127308.545			ug/L
ĺ	V	51	-764.602	200.597	0.017	0.59174	74.53	ug/L
ĺ	Cr	52	7015.619	8.160	0.003	0.12538	214.68	ug/L
ĺ	Mn	55	2143.507	28.495	0.002	0.04366	250.03	ug/L
ĺ	Co	59	46.111	7.524	0.000	0.00032	361.89	ug/L
İ	Ni	60	45.622	2.037	-0.000	-0.03249	9.18	ug/L
ĺ	Cu	65	65.000	24.460	-0.001	-0.12999	12.46	ug/L
. Ī	Ζņ	66	231.671	8.297	-0.004	-0.62778	6.30	ug/L
j >	Ge	72	82560.612	0.139	82560.612			ug/L
ĺ	As	75	-154.267	72.759	0.001	0.16083	95.59	ug/L
Ĺ	Se	82	13.778	66.887	-0.000	-0.22249	58.95	ug/L
_	Υ	89	37.222	29.133	8.333			.ug/L
Γ	Мо	98	671.779	7.879	0.002	0.24333	11.64	ug/L
İ	Ag	107	38.333	24.208	0.000	0.00500	60.58	ug/L
Ì	Ag	109	35.000	0.000	0.000	0.00557	4.12	ug/L
	Cď	111	6.679	94.929	-0.000	-0.00295	305.13	ug/L
	Cd	114	25.346	56.941	-0.000	-0.01368	68.19	ug/L
>	In	115	278234.492	1.901	278234.492			ug/L
L	Sb	. 121	384.456	6.777	0.001	0.14366	5.97	ug/L
Γ	Ва	135	10.556	18.232	-0.000	-0.01584	25.40	ug/L
>	Tb	159	210537.368	0.341	210537.368			ug/L
	Но	165	11.667	28.571	0.000			ug/L
	TI	205	23.333	18.898	-0.000	-0.04513	5.63	ug/L
	Pb	208	129.445	5.806	-0.000	-0.01063	31.56	ug/L
	Bi	209	11.111	22.913	-0.000			ug/L
	,Th	232	26.111	29.482	0.000	0.00171	202.29	ug/L
L	U	238	11.111	34.641	0.000	0.00192	88.28	ug/L
Γ	Na	23	7323.195	7.979	-0.117	-0.00871	5.59	mg/L
	Mg	24	3766.690	1.249	0.002	0.00023	59.44	mg/L
	K	39	718710.027	5.006	-0.307	-0.01332	141.24	mg/L
	Ca	44	20234.395	3.541	-0.008	-0.01074	145.07	mg/L
	Fe	54	29655.385	3.525	0.017	0.00920	50.68	mg/L
_>	Sc-1	45	127308.545	4.486	127308.545			mg/L
	Kr	83	91.112	6.926	8.333			mg/L

Sample ID: Blank

Report Date/Time: Tuesday, December 10, 2013 11:28:45

				QO Odiodiato	a varaco		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 107.552	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
L	Ве	9	•				
Γ	Αl	27					
>	Sc	45		104.777			
1	V	51					
	Cr	52	•		-		
	Mn	55					
	Co	59					
	Ni	60			•		
L	Cu	65					
Γ	Zn	66					
>	Ge	72		102.112			
	As	75					
. L	Se	82					
_	Y	89					
-	Mo	98					
	Ag	107			•		
	Ag .	109					
l	Cd Cd	111 114					
l L	In	115		99.742			
>	Sb	121		33.142			
L	Ва	135					
>	Tb	159		93.402			
	Ho	165		00.102			
1.	TI	205					
i	Pb	208					
İ	Bi	209					
ĺ	Th	232					
Ĺ	U	238					
Γ	Na	23					
	Mg	24					
	K	39					
	Ca	44					
	Fe	54					,
· [>	Sc-1	45					
	Kr	83					

Sample ID: SEQ-CCV

Sample Date/Time: Tuesday, December 10, 2013 11:30:11

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-CCV.46486

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Ünit
>	Li	6	8104.161	7.816	8104.161			ug/L
L	Be	9	2601.653	4.399	0.321	43.98589	7.87	ug/L
Γ	Αl	27	397496.143	5.370	3.162	223.68686	1.86	ug/L
>	Sc	45	124881.557	4.750	124881.557			ug/L
- 1	V	51	164093.393	7.635	1.336	47.77929	3.47	ug/L
	Cr	52	151297.623	1.993	1.162	47.66747	6.59	ug/L
1	Mn	55	231167.365	5.132	1.836	48.60539	3.40	ug/L
	Co	59	200054.815	7.443	1.601	45.18206	3.50	ug/L
1.	Ni	60	45795.458	7.116	0.366	48.16770	7.14	ug/L
L	Cu	65	53842.630	6.223	0.430	48.41549	7.10	ug/L
Γ	Zn	66	26498.845	1.753	0.303	50.96409	3.19	ug/L
>	Ge	72	85567.456	1.913	85567.456			ug/L
1	As	75	36201.286	3.052	0.426	48.26831	1.70	ug/L
L	Se	82	3599.746	2.033	0.042	49.08825	2.23	ug/L
	Υ	89	39.445	2.440	10.556			ug/L
Γ	Мо	98	97974.161	2.605	0.344	48.43659	4.85	ug/L
	Ag	107	150437.917	3.820	0.529	48.93517	1.81	ug/L
	Ag	109	143191.192	3.283	0.504	48.32726	5.79	ug/L
	Cd	111	34275.655	3.568	0.121	47.78851	5.81	ug/L
	Cd	114	77920.046	0.917	0.274	48.37550	2.67	ug/L
>	In	115	284278.709	2.424	284278.709			ug/L
L	Sb	121	107130.953	0.780	0.377	47.56025	2.13	ug/L
Γ	Ва	135	23960.854	1.963	0.111	48.78088	2.69	ug/L
>	Tb	159	215207.568	0.757	215207.568			ug/L
	Но	165	9.444	56.727	-0.000			ug/L
1	TI	205	89534.658	4.033	0.415	50.04382	3.40	ug/L
	Pb	208	119551.350	1.247	0.555	49.34675	1.97	ug/L
	Bi	209	17.222	36.638	0.000			ug/L
	Th	232	113386.021	1.153	0.527	49.95744	0.41	ug/L
L	U	238	113687.099	1.791	0.528	48.88311	2.55	ug/L
Ţ.	Na	23	7841285.350	4.008	62.774	4.66019	8.36	mg/L
	Mg	24	4805241.325	2.116	38.514	4.54192	5.64	mg/L
	K	39	15048232.662	6.983	114.666	4.97570	7.89	mg/L
	Ca	44	475802.316	. 1.556	3.647	5.02745	3.46	mg/L
	Fe	54	1173629.877	2.944	9.204	4.95755	7.78	mg/L
_>	Sc-1	45	124881.557	4.750	124881.557			mg/L
	Kr	83	93.334	17.035	10.556			mg/L

Sample ID: SEQ-CCV

Report Date/Time: Tuesday, December 10, 2013 11:31:47

Page 1

				a o o a o a o a o a o a	Varaoo		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 105.895	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Be	9	97.070	105.695			
L	Al	9 27	87.972				
1	Sc	45	89.475	100 770			
>	V	51	05 550	102.779			
1	v Cr	52	95.559				•
			95.335				
1	Mn	55	97.211				
1	Co	59	90.364				
1	Ni	60 65	96.335				
L	Cu	65 66	96.831				
	Zn	66 70	101.928	405.004			
>	Ge	72 75	00.507	105.831			
1.	As	75	96.537				
L	Se	82	98.177				
г	Υ	89					
	Мо	98	96.873				
	Ag	107	97.870				
	Ag	109	96.655				
	Cd	111	95.577				
	Cd	114					
>	In	115		101.909			
Ī	Sb	121	95.120	•			
	Ва	135	97.562			•	
>	Tb	159		95.474			
}	Но	165					
	TI	205	100.088				
	Pb	208	98.694				
	Bi	209					
1	Th	232	99.915				
L	U	238	97.766				
Γ	Na	23	93.204	•	•		
	Mg	24	90.838				
	K	39	99.514		•		
	Ca	44	100.549				
	Fe	54	99.151				
_>	Sc-1	45				v	
	Kr	83					

Sample ID: SEQ-CCB

Sample Date/Time: Tuesday, December 10, 2013 11:33:28

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-CCB.46487

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
Γ>	Li	6	7834.353	2.239	7834.353			ug/L
L	Be	9	5.556	17.321	-0.000	-0.04221	36.43	ug/L
Γ	Al	27	2501.058	8.683	0.000	0.01675	334.47	ug/L
>	Sc	45	122108.384	5.198	122108.384			ug/L
	V	51	-2131.324	26.540	0.005	0.19108	68.25	ug/L
	Cr	52	6573.458	3.518	0.002	0.06744	104.53	ug/L
	Mn	55	1973.308	28.860	0.001	0.03311	433.62	ug/L
	Co	59	69.445	13.856	0.000	0.00609	29.90	ug/L
ĺ	Ni	60	81.150	26.881	0.000	0.00704	266.14	ug/L
Ĺ	Cu	65	213.337	6.766	0.000	0.00959	237.87	ug/L
٠Ē	Zn	66	483.352	8.866	-0.001	-0.13953	61.23	ug/L
j >	Ge	72	84842.834	9.040	84842.834			ug/L
i	As	75	-160.399	86.943	0.001	0.14647	134.08	ug/L
j	Se	82	25.778	15.099	-0.000	-0.05946	107.07	ug/L
_	Υ	89	40.000	8.333	11.111			ug/L
Γ	Мо	98	592.631	17.848	0.001	0.20066	25.82	ug/L
i	Ag	107	49.445	38.776	0.000	0.00856	73.72	ug/L
i	Ag	109	48.889	20.549	0.000	0.01022	33.36	ug/L
i	Cd	111	18.193	23.300	0.000	0.01330	44.01	ug/L
i	Cd	114	41.708	28.930	-0.000	-0.00363	204.84	ug/L
>	In	115	280449.215	0.588	280449.215			ug/L
i	Sb	121	377.789	1.019	0.001	0.13939	1.30	ug/L
Ē	Ва	135	15.556	22.304	-0.000	-0.00627	108.56	ug/L
i>	Tb	159	215984.942	1.858	215984.942			ug/L
i.	Но	165	7.778	12.372	-0.000			ug/L
i	TI	205	106.668	24.055	0.000	0.00088	1519.73	ug/L
i i	Pb	208	164.445	8.192	0.000	0.00238	216.39	ug/L
i	Bi	209	11.111	17.321	-0.000			ug/L
i	Th	232	53.889	7.783	0.000	0.01363	15.36	ug/L
i	U	238	17.778	32.924	0.000	0.00466	55.18	ug/L
Ē	Na	23	24657.487	4.126	0.027	0.00200	15.07	mg/L
j	Mg	24	3963.486	9.555	0.005	0.00056	32.92	mg/L
i	ĸ	39	745654.878	3.527	0.154	0.00669	234.85	mg/L
i	Ca	44	19244.595	2.452	-0.009	-0.01279	52.09	mg/L
i	Fe	54	28050.076	8.686	0.013	0.00726	75.22,	-
>	Sc-1	45	122108.384	5.198	122108.384			mg/L
	Kr	83	95.556	13.091	12.778			mg/L

Sample ID: SEQ-CCB

Report Date/Time: Tuesday, December 10, 2013 11:35:03

Page 1

				QC Calculated	i vaiues		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 102.369	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
L	Ве	9					
Γ	Al	27					
>	Sc	45		100.497		3	
	V	51					
	Çr	52					
	Mn	55					
	Co	59					
	·Ni	60			•		
L	Cu	65					
Γ	Zn	66					
>	Ge	72		104.935			
	As	75					
L	Se	82					
	Υ	89					
Γ	Мо	98					
	Ag	107					
	Ag	109					\$
- !	Cd	111					
ļ	Cd	114					
>	In	115		100.536			
Ĺ	Sb	121					
ļ	Ва	135					
>	Tb	159		95.819			
	Но	165					
ļ	TI	205					
ļ	Pb	208					
	Bi	209					
	Th	232					
Ē	U	238					
	Na	23					
	Mg	24					
	K	39					
ļ	Ca	44					
	Fe	54					
_>	Sc-1	45					
	Kr	83		•			

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-09.46488

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8409.544	1.535	8409.544			ug/L
Ĺ	Be	9	5.000	33.333	-0.000	-0.05758	48.95	ug/L
Γ	Al	27	7749.280	10.303	0.041	2.89599	18.79	ug/L
· >	Sc	45	127222.271	8.486	127222.271			ug/L
1	V	51	-251.803	639.390	0.021	0.75452	56.89	ug/L
	Cr	52	9204.553	2.113	0.020	0.83987	31.42	ug/L
	Mn	55	886708.514	4.168	6.977	184.64927	6.29	ug/L
	Co	59	1314.027	6.631	0.010	0.28334	12.74	ug/L
	Ni	60	229.636	37.861	0.001	0.15752	54.67	ug/L
L	Cu	65	1470.173	4.262	0.010	1.12090	12.68	ug/L
Γ	Zn	66	257355.800	3.524	3.095	520.16584	7.86	ug/L
>	Ge	72	83321.784	8.844	83321.784			ug/L
	As	75	-153.225	39.139	0.001	0.16317	53.45	ug/L
Ŀ	Se	82	30.334	42.319	0.000	0.01178	1654.17	ug/L
	Υ	89	99.445	13.650	70.556			ug/L
Γ	Мо	98	2828.060	2.574	0.010	1.35161	4.95	ug/L
	Ag	107	23.889	10.657	0.000	0.00029	243.58	ug/L
	Ag	109	17.778	28.641	-0.000	-0.00025	789.49	ug/L
	Cd	111	1820.542	3.218	0.007	2.61289	6.25	ug/L
	Cd	114	3970.250	2.254	0.014	2.52043	4.36	ug/L
>	In	115	275033.821	3.190	275033.821			ug/L
L	Sb	121	213.337	12.279	0.001	0.06754	21.98	ug/L
Γ	Ва	135	917.290	3.735	0.004	1.87863	3.54	ug/L
>	Tb	159	209835.026	0.863	209835.026			ug/L
	Но	165	6.667	66.144	-0.000			ug/L
	TI	205	13.889	24.980	-0.000	-0.05050	4.04	ug/L
	Pb	208	138.334	3.188	-0.000	-0.00670	20.72	ug/L
	Bi	209	3.889	49.487	-0.000			ug/L
1.	Th	232	28.333	20.377	0.000	0.00276	96.40	ug/L
L	U	238	802.829	5.339	0.004	0.35100	4.84	ug/L
Γ	Na	23	1696033.214	1.434	13.219	0.98137	8.50	mg/L
	Mg	24	1837181.222	4.848	14.463	1.70560	7.40	mg/L
	K	39	1476125.787	5.708	5.736	0.24891	29.68	mg/L
	Ca	44	2126383.333	4.027	16.624	22.91688	8.97	mg/L
	Fe	54	31095.727	8.952	0.028	0.01530	21.73	mg/L
>	Sc-1	45	127222.271	8.486	127222.271			mg/L
	Kr	83	96.112	13.016	13.334			mg/L

Sample ID: C131107-09

Report Date/Time: Tuesday, December 10, 2013 11:38:23

				QC Calculated	i vaiues		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 109.885	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
ĺ	Ве	9		. 100,000		•	
Ē	Al	27					
>	Sc	45		104.706			
i	V	51					
j	Cr	52					
	Mn	55		·			•
	Co	59					
	Ni	60					
L	Cu	65					
Γ	Zn .	66					
>	Ge	72		103.053	•		
1	As	75					
L	Se	82					
	Υ	89					
Γ	Мо	98					
	Ag	107					
-	Ag	109					
	Cd	111					
-	Cd	114	•				
>	ln O	115		98.595			
Ĺ	Sb	121		• •			
	Ba Tl-	135					
>	Tb	159	•	93.090		•	
1	Ho TI	165 205					
	Pb	208					
l l	Bi	209					
1	Th	232					
	U	238					
È	Na	23				•	
i	Mg	24					
i	K	39					•
İ	Са	44					
i	Fe	54			·		
>	Sc-1	45					
	Kr	83					

Sample ID: C131107-12 @/ or luciol is Sample Date/Time: Tuesday, December 10, 2013 11:39:50

Sample Type: Sample Sample Description: Number of Replicates: 3. Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-12.46489

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL):

Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8124.746	8.316	8124.746			ug/L
i	Be	9	5.556	17.321	-0.000	-0.04473	47.05	ug/L
Ē	Al	. 27	4751.817	9.527	0.016	1.15501	24.36	ug/L
j >	Sc	45	130272.168	5.798	130272.168			ug/L
i	V	51	-942.266	55.808	0.015	0.54786	27.49	ug/L
Ì	Cr	52	9191.236	9.243	0.019	0.76359	49.00	ug/L
ĺ	Mn	55	865484.676	1.398	6.646	175.89017	6.82	ug/L
ĺ	Co	59	1296.801	5.049	0.010	0.27209	10.20	ug/L
	Ni .	60	336.831	39.387	0.002	0.26369	53.80	ug/L
L	Cu	65	860.615	11.264	0.005	0.55887	19.01	ug/L
Γ	Zn	66	236597.272	2.792	2.806	471.51521	4.24	ug/L
>	Ge	72	84243.952	5.446	84243.952			ug/L
	As	75	-133.807	34.853	0.002	0.19424	26.89	ug/L
L	Se	82	27.111	67.928	-0.000	-0.03180	886.48	ug/L
	Y	89	101.112	9.936	72.223			ug/L
Γ	Мо	98	2726.409	1.875	0.009	1.25495	4.45	ug/L
	Ag	107	21.111	9.116	-0.000	-0.00085	92.39	ug/L
1	Ag	109	11.111	22.913	-0.000	-0.00274	32.31	ug/L
	Cd	111	1673.156	4.355	0.006	2.32299	6.55	ug/L
	Cd	114	3830.952	4.597	0.013	2.35208	5.56	ug/L
>	In	115	284047.767	2.212	284047.767			ug/L
L	Sb	121	153.891	5.343	0.000	0.03780	13.82	ug/L
Γ	Ва	135	937.848	3.661	0.004	1.92469	3.54	ug/L
>	Tb	159	209504.721	0.714	209504.721			ug/L
	Ho	165	10.000	16.667	0.000			ug/L
1 .	TI	205	20.000	50.690	-0.000	-0.04699	12.29	ug/L
	Pb	208	152.778	10.982	-0.000	-0.00044	1721.58	ug/L
!	Bi	209	7.222	13.323	-0.000			ug/L
ļ	Th	232	16.111	39.165	-0.000	-0.00274	106.41	ug/L
Ĺ	U	238	811.720	6.562	0.004	0.35547	6.16	ug/L
!	Na	23	1692371.497	0.474	12.847	0.95373	6.25	mg/L
1	Mg	24	1817329.844	1.129	13.948	1.64484	4.70	mg/L
	K	39	1503186.009	7.016	5.618	0.24379	22.51	mg/L
	Ca	44	2207145.035	1.817	16.803	23.16395	4.43	mg/L
	Fe	54	30192.008	6.591	0.017	0.00895	151.97	mg/L
_>	Sc-1	45	130272.168	5.798	130272.168			mg/L
	Kr .	83	93.890	18.814	11.111			mg/L

Sample ID: C131107-12

Report Date/Time: Tuesday, December 10, 2013 11:41:26

				QU Daibaiaio	i varaco		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 106.164	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
	Be	9		100.104		•	
Ė	Al	27		•			
>	Sc	45		107.216			
	V	51		107.210			
1	Cr	52			•		
i	Mn	55					
i	Co	59					
į	Ni	60		•			
Ĺ	Cu	65					
Γ	Zn	66					
>	Ge	72		104.194			
	As	75					
L	Se	82			•		
	Υ	89					•
Γ	Мо	98 _.				* .	
	Ag	107					
	Ag	109					
	Cd	111					
	Cd	114					
>	In	115		101.826			
Ĺ	Sb	121					
ļ	Ва	135			•		
>	Tb	159		92.944			
1	Ho	165			•		
	TI	205					
	Pb	208					
	Bi	209					
	Th	232					
L	U Na	238		•			
1		23 24					
1	Mg K	39					
	Ca .	44					
1	Fe	54	•				
>	Sc-1	45	~				
L>	Kr	83					
	IM	03					

Sample ID: C131107-14 @/ by lull/6/17
Sample Date/Time: Tuesday, December 10, 2013 11:42:53

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-14.46490

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8296.064	3.963	8296.064			ug/L
L	Be	9	6.667	43.301	-0.000	-0.03020	141.14	ug/L
Γ	ΑI	27	2682.244	7.297	0.000	0.01383	1074.96	ug/L
>	Sc ·	45	131836.538	7.054	131836.538			ug/L
	V	51	-161.435	676.325	0.021	0.76607	38.58	ug/L
	Cr	52	9962.403	6.825	0.024	0.97471	39.95	ug/L
	Mn	55	817177.054	6.798	6.188	163.76291	4.31	ug/L
	Co	59	1145.661	3.255	0.008	0.23614	7.58	ug/L
	Ni	60	218.589	58.277	0.001	0.14469	100.41	ug/L
L	Cu	65	353.343	5.316	0.001	0.11554	31.90	ug/L
Γ	Zn	66	205457.930	6.001	2.446	411.14244	7.17	ug/L
>	Ge	72	83807.653	1.197	83807.653			ug/L
	As	75	-123.468	38.496	0.002	0.20594	30.20	ug/L
L	Se	82	21.667	88.700	-0.000	-0.11458	236.98	ug/L
	Υ	89	94.445	12.395	65.556		٠	ug/L
Γ	Mo	98	2522.069	3.289	0.008	1.18134	3.43	ug/L
	Ag	107	12.778	19.924	-0.000	-0.00348	24.17	ug/L
	Ag	109	7.778	12.372	-0.000	-0.00381	9.02	ug/L
	Cd	.111	847.859	2.005	0.003	1.19698	2.42	ug/L
	Cd	114	1973.508	3.189	0.007	1.22468	3.66	ug/L
>	¹ In	115	277720.828	0.458	277720.828			ug/L
L	Sb	121	135.557	11.156	0.000	0.03097	23,06	ug/L
Γ	Ва	135	881.173	3.076	0.004	1.82777	3.26	ug/L
>	Tb	159	207081.383	0.190	207081.383		•	ug/L
	Но	165	5.556	45.826	-0.000			ug/L
	TI	205	25.556	38.214	-0.000	-0.04361	13.06	ug/L
	Pb	208	130.556	11.154	-0.000	-0.00924	68.55	ug/L
	Bi	209	6.111	31.492	-0.000			ug/L
	Th	232	6.111	56.773	-0.000	-0.00725	21.96	ug/L
L	U	238	800.607	3.656	0.004	0.35478	3.85	ug/L
Γ	Na	23	1842590.918	2.150	13.836	1.02712	5.44	mg/L
	Mg	24	2039190.221	4.494	15.466	1.82390	4.65	mg/L
	K	39	1604956.229	6.491	6.272	0.27217	22.72	mg/L
	Ca	44	2242771.093	3.378	16.880	23.27020	5.04	mg/L
	Fe	54	28870.206	7.402	0.004	0.00208	628.98	mg/L
L>	Sc-1	45	131836.538	7.054	131836.538			mg/L
	Kr	83	116.668	10.000	33.889			mg/L

Sample ID: C131107-14

Report Date/Time: Tuesday, December 10, 2013 11:44:29

					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	10,000		
	Г.	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
	>	Li	6		108.403			
	Ļ	Ве	9					
		Al	27		400.500			
	>	Sc	45		108.503			
	1	V 0	51 50					
	1	Cr Ma	52					
	1	Mn	55 50			,		
	į į	Co	59 ·					
		Ni	60 65					
	Ļ	Cu	65 66					
	i i	Zn	66		100.054			
	>	Ge	72		103.654			
		As	75					
	L	Se Y	82		•			
	_		89					
		Mo	98					
		Ag	107					
	1	Ag	109					
	l I	Cd	111					
	l I	Cd	114		00 550			
	>	In Sb	115		99.558			
	L	Ba	121					•
		Тb	135 159		91.869			
l I	>	Но	165		91.009			
		TI	205	•				
- 1		Pb	208					
ļ		Bi	209					
- 1		Th	232					
 		U	238					
l T	=	Na	. 23					
		Mg	24					
 		K	39	•				
i		Ca	44					
-		Fe	54					
- 1	_>	Sc-1	45	•				
L		Kr	83					
		. 41	55					

Sample ID: C131107-16 @ / 6 / 8 / 1/6 / 13 Sample Date/Time: Tuesday, December 10, 2013 11:45:56

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-16.46491

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8545.853	6.103	8545.853			ug/L
L	Be	9	5.000	88.192	-0.000	-0.06140	104.56	ug/L
Γ	Al	27	6511.729	4.791	0.028	1.99773	16.09	ug/L
>	Sc	45	134783.830	5.330	134783.830			ug/L
	V	51	-475.643	84.447	0.019	0.68815	14.89	ug/L
	Cr	52	11075.929	4.297	0.030	1.23286	14.33	ug/L
-	Mn	55	764982.000	5.348	5.661	149.81350	0.22	ug/L
	Co	59	945.627	1.966	0.007	0.18851	6.17	ug/L
	Ni	60	107.972	100.346	0.000	0.02903	372.58	ug/L
L	Cu	65	367.789	2.281	0.001	0.12017	19.59	ug/L
Γ	Zn	66	187052.142	7.651	2.165	363.89259	2.98	ug/L
>	Ge	72	86127.333	6.907	86127.333			ug/L
	As	75	-350.951	20.200	-0.001	-0.09432	127.80	ug/L
L	Se	82	39.889	51.251	0.000	0.12034	206.65	ug/L
	Υ	89	96.112	8.195	67.223			ug/L
Γ	Мо	98	2275.612	2.340	0.007	1.03707	5.54	ug/L
İ	Ag	107	22.222	26.339	-0.000	-0.00046	439.41	ug/L
j	Ag	109	11.667	14.286	-0.000	-0.00252	25.92	ug/L
ĺ	Cd	111	1244.051	1.412	0.004	1.73149	3.51	ug/L
j	Cd	114	2596.163	2.667	0.009	1.59230	4.89	ug/L
>	ln	115	282753.819	2.957	282753.819			ug/L
. İ	Sb	121	106.112	12.598	0.000	0.01672		ug/L
Γ	Ва	135	917.290	1.524	0.004	1.90185	0.88	ug/L
>	Tb	159	207327.352	1.054	207327.352			ug/L
j	Но	165	11.111	22.913	0.000			ug/L
i	TI	205	15.556	40.564	-0.000	-0.04942	7.53	ug/L
İ	Pb	208	131.667	2.193	-0.000	-0.00884	8.78	ug/L
Ì	Bi	209	11.111	70.887	-0.000			ug/L
Ì	Th	232	6.111	83.320	-0.000	-0.00727	31.57	ug/L
Ĺ	U	238	775.604	2.854	0.004	0.34315	2.04	ug/L
Ē	Na	23	2197491.454	7.769	16.115	1.19631	2.48	mg/L
į	Mg	24	2299098.790	4.185	17.043	2.00982	3.43	mg/L
İ	K	39	1841919.209	0.148	7.730	0.33541	9.65	mg/L
İ	Са	44	2367647.717	11.162	17.363	23.93484	5.99	mg/L
i	Fe	54	32295.596	14.479	0.023	0.01229	96.24	mg/L
>	Sc-1	45	134783.830	5.330	134783.830			mg/L
-	Kr	83	82.778	12.945	-0.000			mg/L

Sample ID: C131107-16

Report Date/Time: Tuesday, December 10, 2013 11:47:32

Analyte Mass QC Std % Recovery Int Std % Recovery Spike % Recovery Dilution % Diff Dup. Rel. % Diff Bee 9 111.666 Bee 9					Q O Ourourator	· Varace		•
BB 9 AI 27 SC 45 V 51 Cr 52 Mn 55 Co 59 Ni 60 Cu 65 Zn 66 Se 72 As 75 Se 82 Y 89 Mo 98 Ag 107 Ag 107 Ag 107 Ag 105 Cd 111 Cd 114 In 115 In 115 Ba 135 In 159 In 105 In 105 In 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 </th <th>г</th> <th></th> <th></th> <th>QC Std % Recovery</th> <th></th> <th>Spike % Recovery</th> <th>Dilution % Diff</th> <th>Dup. Rel. % Diff</th>	г			QC Std % Recovery		Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
AI 27 > Sc 45 V 51 Cr 52 Mn 55 Co 59 Ni 60 L Cu 65 Zn 66 > Ge 72 108.523 As 75 Se 82 Y 89 Mo 98 Ag 109 Cd 111 Cd 111 Cd 114 > In 115 101.362 Sb 121 Ba 135 > Tb 159 91.978 Ho 165 T T1 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45	>				111.666	g of the second		
> Sc	Ļ							
V 51 Cr 52 Mn 55 Co 59 Ni 60 Cu 65 Zn 66 > Ge 72 As 75 Se 82 Y 89 Mo 98 Ag 109 Cd 111 Cd 114 In 115 Sb 121 Ba 135 > Tb 159 Ho 165 TI 205 Pb 208 Bi 209 Th 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45					440.000			•
Cr 52	>				110.929			
Mn	- 1					•		
Co	-							•
Ni 60	i			*				
L Cu 65	1							
Zn 66	j J							
> Ge	L		66					
As	1.		72		106 500			•
L Se 82 Y 89 Mo 98 Ag 107 Ag 109 Cd 111 Cd 114 In 115 Ba 135 > Tb 159 Ho 165 TI 205 Pb 208 Bi 209 Th 232 L U 238 Na Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45	>				100,523		•	
Y 89 Mo 98 Ag 107 Ag 109 Cd 111 Cd 114 > In 115 Sb 121 Ba 135 > Tb 159 Ho 165 TI 205 Pb 208 Bi 209 Th 232 L U Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45	1		82					•
Mo 98 Ag 107 Ag 109 Cd 111 Cd 114 > In 115 Sb 121 Ba 135 > Tb 159 Ho 165 TI 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45	L							
Ag	Γ							
Ag 109 Cd 111 Cd 114 In 115 Sb 121 Ba 135 Tb 159 Ho 165 TI 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45	i							
Cd 111 Cd 114 > In 115 Sb 121 Ba 135 > Tb 159 Ho 165 I TI 205 Pb 208 Bi 209 I Th 232 L U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45								
Cd 114 > In 115 Sb 121 Ba 135 > Tb 159 Ho 165 TI 205 Pb 208 Bi 209 Th 232 L U 238 Na Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45	i							
> In	i							
L Sb 121 □ Ba 135 □> Tb 159 91.978 □ Ho 165 □ Tl 205 □ Pb 208 □ Bi 209 □ Th 232 □ U 238 □ Na 23 □ Mg 24 □ K 39 □ Ca 44 □ Fe 54 □> Sc-1 45	>				101 362			
Ba 135 > Tb 159 Ho 165 TI 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 Sc-1 45	ĺ							
Tb	Ī							
Ho	>				91.978		*	
TI 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 L> Sc-1	j							
Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 Sc-1 45		TI	205					
Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45		Pb	208					
U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 L> Sc-1 45			209			•		
Na 23 Mg 24 K 39 Ca 44 Fe 54 Sc-1 45								
Mg 24 K 39 Ca 44 Fe 54 Sc-1 45	L					•		
K 39 Ca 44 Fe 54 > Sc-1 45	Γ							
Ca 44 Fe 54 > Sc-1 45								
Fe 54 -> Sc-1 45							•	
_> Sc-1 45						•		
L> Sc-1 45 Kr 83								
Kr 83	_>	Sc-1	45					
		Kr	83				•	

Sample ID: C131107-19

Sample Date/Time: Tuesday, December 10, 2013 11:48:59

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-19.46492

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

					Componition	Joane			
		Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
ſ	>	Li	6	8770.055	6.501	8770.055			ug/L
	-	Ве	9	7.778	12.372	-0.000	-0.01795	54.85	ug/L
ſ	-	Al	27	21508.695	5.762	0.132	9.31227	9.07	ug/L
	>	Sc	45	141776.098	2.282	141776.098			ug/L
		V	51	7679.026	18.011	0.077	2.74517	11.68	ug/L
		Cr	52	34450.357	4.303	0.191	7.83021	5.84	ug/L
1		Mn	55	888994.787	7.788	6.261	165.69513	9.09	ug/L
		Co	59	1351.813	7.831	0.009	0.25962	10.37	ug/L
		Ni	60	-310.380	100.434	-0.003	-0.36510	77.77	ug/L
		Cu	65	1319.584	4.061	0.008	0.86006	4.05	ug/L
Γ	-	Zn	66	104998.185	3.698	1.230	206.67625	3.50	ug/L
	>	Ge	72	84927.611	1.087	84927.611			ug/L
		As	75	355.466	19.908	0.007	0.84604	11.00	ug/L
		Se ,	82	47.001	32.878	0.000	0.23153	90.23	ug/L
		Υ	89	653.368	3.186	624.479			ug/L
ſ	•	Мо	, 98	2584.195	2.015	0.009	1.25836	6.13	ug/L
		Ag	107	122.223	12.961	0.000	0.03451	20.38	ug/L
		Ag	109	102.223	6.173	0.000	0.03006	12.07	ug/L
		Cd	111	573.321	6.226	0.002	0.83263	5.40	ug/L
		Cd	114	1239.999	2.511	0.004	0.78588	6.59	ug/L
	>	In	115	268785.002	3.970	268785.002	•		ug/L
L		Sb	121	230.004	6.276	0.001	0.07751	11.29	ug/L
Γ		Ва	135	26543.473	1.197	0.142	62.30227	0.44	ug/L
	>	Tb	159	186674.926	1.437	186674.926			ug/L
		Но	165	15.556	22.304	0.000			ug/L
		TI	205	50.556	9.517	-0.000	-0.02587	11.25	ug/L
		Pb	208	3000.282	3.486	0,015	1.36401	2.89	ug/L
		Bi	209	130.001	14.276	0.001			ug/L
		Th	232	17.778	14.321	-0.000	-0.00102	125.84	ug/L
Ĺ		U	238	1110.654	5.917	0.006	0.54791	7.26	ug/L
Γ		Na	23	6895176.350	4.165	48.460	3.59755	3.59	mg/L
		Mg	24	8479031.946	2.861	59.798	7.05185	3.63	mg/L
-		K	39	4924125.650	2.212	28.793	1.24939	5.37	mg/L
-		Ca	44	6227899.886	3.459	43.772	60.34094	3.86	mg/L
		Fe	54	31278.746	13.399	0.004	0.00231	583.66	mg/L
Ŀ		Sc-1	45	141776.098	2.282	141776.098			mg/L
		Kr	83	110.001	4.545	27.223			mg/L

Sample ID: C131107-19

Report Date/Time: Tuesday, December 10, 2013 11:50:35

				QC Calculated	i values		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 114.596	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
ĺ	Be	9		114.000			
ř	Al	27	•				
>	Sc	45		116.684			
1	٧	51		110.001			
i.	Cr	52	•				
İ	Mn	55					
j	Co	59				,	
	Ni	60			•		
L	Cu	65					
Γ	Zn	66					
>	Ge	72		105.039			•
-	As	75					
L	Se `	82		•		ů.	
_	Y 1	89					
Ţ	Мо	98	•				
	Ag	107					
	Ag	109					
	Cd	111					
	Cd	114					
>	ln O'-	115		96.355			
L	Sb	121					
	Ba Th	135		00.046			
>	Tb Ho	159 165		82.816	,		
1	TI	205					
1	Pb	208					
İ	Bi	209	•				
i	Th	232				•	
i	U	238					
Ī	Na	23					
i	Mg	24					
į	ĸ	39					
Ì	Ca	44					
	Fe	54					
<u>_</u> >	Sc-1	45					
	Kr	83					

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-22.46493

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas, Intens, Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	9323.630	5.580	9323.630			ug/L
L	Be	9	6.667	43.301	-0.000	-0.04260	84.28	ug/L
Γ	Al	27	2037.555	4.867	-0.007	-0.47661	21.38	ug/L
>	Sc	45	151775.042	6.755	151775.042			ug/L
	V	51	10257.255	10.356	0.091	3.24747	13.11	ug/L
	Cr	52	44860.055	4.255	0.245	10.04280	12.93	ug/L
	Mn	55	325456.737	4.736	2.131	56.41129	2.59	ug/L
	Со	59	1193.447	4.605	0.008	0.21237	4.55	ug/L
	Ni	60	-694.954	37.405	-0.005	-0.67650	30.41	ug/L
L	Cu ⁻	65	419.459	4.431	0.001	0.12449	24.34	ug/L
Γ	Zn	66	9273.554	5.181	0.096	16.15561	7.49	ug/L
>	Ge	72	90456.874	4.514	90456.874			ug/L
	As	75	2453.122	3.056	0.030	3.44478	2.66	ug/L
L	Se	82	17.667	139.113	-0.000	-0.18007	180.42	ug/L
	Υ	89	1742.465	2.488	1713.576			ug/L
Γ	Мо	98	1293.422	4.077	0.004	0.58273	3.31	ug/L
1	Ag	107	8.889	28.641	-0.000	-0.00466	19.46	ug/L
	Ag	109	6.667	43.301	-0.000	-0.00410	25.94	ug/L
	Cd	111	36.410	10.461	0.000	0.04143	12.40	ug/L
	Cd	114	49.367	40.580	0.000	0.00258	500.67	ug/L
>	In	115	267883.791	1.243	267883.791			ug/L
L	Sb	121	118.334	9.859	0.000	0.02514	24.42	ug/L
Γ	Ва	135	1049.533	7.204	0.006	2.59031	7.18	ug/L
>	Tb	159	175070.989	0.761	175070.989			ug/L
	Но	165	20.556	40.810	0.000			ug/L
	TI	205	137.224	1.855	0.000	0.03594	6.86	ug/L
	Pb	208	405.005	2.968	0.002	0.14041	3.28	ug/L
	Bi	209	9.444	83.397	-0.000			ug/L
	Th	232	7.778	53.927	-0.000	-0.00584	38.57	ug/L
L	U	238	259.450	7.076	0.001	0.13412	6.55	ug/L
Γ	Na	23	9746258.968	5.386	64.335	4.77607	10.88	mg/L
	Mg	24	8774647.280	3.500	57.873	6.82485	3.36	mg/L
	K	39	8093734.317	5.201	47.655	2.06786	13.54	mg/L
	Ca	44	5315989.543	5.194	34.900	48.11025	4.03	mg/L
	Fe	54	106936.639	9.984	0.490	0.26368	13.87	mg/L
_>	Sc-1	45	151775.042	6.755	151775.042			mg/L
	Kr	83	91.112	15.771	8.333			mg/L

Sample ID: C131107-22

Report Date/Time: Tuesday, December 10, 2013 11:53:38

				~ · · · · · · · · · · · · · · · · · · ·			
[:	Analyte → Li	Mass 6	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
-	Be	9		121.829			
L	Al	27					
 	_	45		104.040			
;	V 30	51		124.913			
	v Cr						
		52 55					
	Mn	55 59					
1	Co						
-	Ni Cu	60 65			•		
L	Cu	65 66					
	Zn	66 70		444.070			
>		72 75		111.878			
	As	75					
L	Se Y	82					
г		89					
1	Мо	98					
	Ag	107					
-	Ag	109					
-	Cd	111					
ļ	Cd	114					
>		115	•	96.032			
Ĺ	Sb	121					•
!	Ba	135					
>		159		77.668			
	Ho 	165					
	TI	205					
	Pb	208					
	Bi 	209	•				•
	Th	232					
Ĺ	U	238					
!	Na	23		4			
ļ	Mg	24					
ļ	K	39		•			
- [Ca	44					
	Fe	54					
_>		45					
	Kr [.]	83					

Method 200.8 - Summary Report 25 @/vx \www./\u00e4/0/13 Sample ID: C131107-25

Sample Date/Time: Tuesday, December 10, 2013 11:55:04

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-25.46494

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	9302.484	4.737	9302.484			ug/L
L	Be	9	7.222	66.617	-0.000	-0.03467	197.01	ug/L
Γ	Αl	27	6060.757	14.603	0.022	1.54160	24.13	ug/L
>	Sc	45	144194.799	6.325	144194.799			ug/L
-	V	51	2149.452	55.959	0.038	1.35734	23.90	ug/L
	Cr	52	18167.500	3.618	0.074	3.04410	14.85	ug/L
1	Mn	55	2484024.213	6.497	17.221	455.76568	4.05	ug/L
	Co	59	2594.431	10.000	0.018	0.49892	11.02	ug/L
	Ni	60	344.340	64.113	0.002	0.23738	89.38	ug/L
L	Cu	65	317.230	6.653	0.001	0.06061	42.39	ug/L
Γ	Zn	66	5740.414	2.104	0.059	9.96815	5.38	ug/L
>	Ge	72	87266.147	3.836	87266.147			ug/L
	As	75	281.850	48.664	0.006	0.73505	22.95	ug/L
L	Se	82	29.223	18.440	-0.000	-0.02612	222.25	ug/L
	Υ	89	523.355	10.206	494.466			ug/L
Γ	Mo	98	1914.137	5.148	0.006	0.91049	3,69	ug/L
1	Ag	107	11.111	8.660	-0.000	-0.00390	6.76	ug/L
ŀ	Ag	109	7.778	49.487	-0.000	-0.00372	36.09	ug/L
	Cd	111	18.333	86.627	0.000	0.01466	157.73	ug/L
1	Cd	114	25.800	41.961	-0.000	-0.01281	55.81	ug/L
>	In	115	267363.370	1.888	267363.370			ug/L
L	Sb	121	103.334	16.993	0.000	0.01814	45.77	ug/L
Γ	Ва	135	2366.004	3.806	0.013	5.86247	4.67	ug/L
>	Tb	159	175866.071	1.837	175866.071			ug/L
ŀ	Но	165	12.222	31.492	0.000			ug/L
	TI	205	23.889	17.558	-0.000	-0.04211	6.93	ug/L
	Pb	208	298.892	2.514	0.001	0.08585	4.41	ug/L
- [Bi	209	8.333	40.000	-0.000			ug/L
!	Th	232	11.111	67.639	-0.000	-0.00401	103.86	ug/L
Ĺ	U	238	171.113	7.566	0.001	0.08713	8.92	ug/L
	Na	23	4855634.611	4.753	33.585	2.49324	7.57	mg/L
.	Mg	24	4549162.952	4.527	31.546	3.72011	1.93	mg/L
!	K	39	5485532.947	6.462	32.142	1.39473	8.48	mg/L
	Ca	44	2387140.528	4.764	16.400	22.60764	2.15	mg/L
ļ	Fe	54	72567.358	3.727	0.288	0.15502	4.99	mg/L
_>	Sc-1	45	144194.799	6.325	144194.799			mg/L
	Kr	83	93.334	9.449	· 10.556			mg/L

Sample ID: C131107-25

Report Date/Time: Tuesday, December 10, 2013 11:56:40

				,	QC Calculated	values		
	「 >	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 121.553	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
	>	Be	9		121.000	•		
	Γ	Al	27					
	>	Sc	45		118.675			
		V	51		110.070			
		Cr	52					
		Mn	55					
		Co	59					•
		Ni	60					
	_	Cu	65					
	-	Zn	66					
	>	Ge	72		107.932			
		As	75					
	_	Se	82	•				
	_	Υ	89					
[Мо	98					
		Ag	107					
ļ		Ag	109			*		
		Cd	111					
.		Cd	114		05.045			
	>	ln O	115		95.845			
Ĺ	-	Sb	121					
		Ba Th	135		70.000			
	>	Tb Ho	159		78.020			
l I		TI	165 205					
1		Pb	208					
i		Bi	209					
		Th	232					
i		U.	238					
Ī		Na	23		•			•
i		Mg	24					
i		ĸ	39					
į		Ca	44					
j		Fe	54					
Ĺ	>	Sc-1	45					
		Kr	83					

Method 200.8 - Summary Report

Sample ID: C131107-28 / / vx / l//s (3)

Sample Date/Time: Tuesday, December 10, 2013 11:58:07

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-28.46495

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	9022.630	5.139	9022.630			ug/L
İ	Be	9	2.222	43.301	-0.001	-0.10559	13.20	ug/L
Ī	Al	27	2551.633	5.066	-0.002	-0.16007	40.85	ug/L
i>	Sc	45	142349.646	7.394	142349.646			ug/L
i	V	51	-525.868	170.455	0.019	0.68407	31.34	ug/L
Ì	Cr	52	11228.442	6.870	0.027	1.10967	34.95	ug/L
į	Mn	55	-4677.276	22.173	-0.048	-1.27829	18.87	ug/L
İ	Co	59	232.782	18.005	0.001	0.03609	16.85	ug/L
İ	Ni	60	-512.322	38.763	-0.004	-0.56402	40.55	ug/L
İ	Cu	65	269.450	5.151	0.000	0.02591	66.90	ug/L
Ē	Zn	66	1491.845	4.535	0.010	1.74645	13.52	ug/L
>	Ge	72	88286.454	3.841	88286.454			ug/L
İ	As	75	-215.763	34.154	0.001	0.09753	85.14	ug/L
Ĺ	Se	82	29.889	87.434	-0.000	-0.01590	2209.50	ug/L
	Υ	89	400.568	9.998	371.680			ug/L
Γ	Мо	98	1293.414	5.121	0.004	0.57071	2.98	ug/L
Ì	Ag	107	10.556	36.464	-0.000	-0.00414	33.33	ug/L
1.	Ag	109	5.556	69.282	-0.000	-0.00452	30.95	ug/L
	Cd	111	62.425	21.339	0.000	0.07821	24.01	ug/L
1	Cd	114	156.044	18.706	0.000	0.07099	24.48	ug/L
>	In	115	272676.414	3.065	272676.414			ug/L
L	Sb	121	54.445	26.393	-0.000	-0.00534	135.87	ug/L
Γ	Ва	135	653.923	4.716	0.004	1.54911	3.88	ug/L
>	Tb	159	180613.229	0.957	180613.229			ug/L
	Но	165	7.222	48.038	-0.000			ug/L
	TI	205	25.000	24.037	-0.000	-0.04181	9.45	ug/L
	Pb	208	132.223	4.772	-0.000	-0.00020	1687.05	ug/L
	Bi	209	6.667	50.000	-0.000			ug/L
	Th	232	2.222	43.301	-0.000	-0.00889	5.61	ug/L
L	U	238	872.839	5.698	0.005	0.44438	6.73	ug/L
	Na	23	2286850.714	1.965	15.938	1.18318	6.19	mg/L
	Mg	24	2412820.420	9.044	16.918	1.99506	4.16	mg/L
	K	39	1504115.201	4.913	4.662	0.20228	26.52	mg/L
	Ca	44	2643256.752	4.132	18.449	25.43293	6.14	mg/L
	Fe	54	31338.771	5.947	0.004	0.00241	248.94	mg/L
_>	Sc-1	45	142349.646	7.394	142349.646			mg/L
	Kr ·	83	91.112	16.997	8.333			mg/L

Sample ID: C131107-28

Report Date/Time: Tuesday, December 10, 2013 11:59:43

Analyte Mass					QO Calculated	i values		
Be 9 AI 27 > Sc 45 V 51 Cr 52 Mn 55 Co 59 Ni 60 Cu 65 Zn 66 > Ge 72 As 75 L Se 82 Y 89 Mo 98 Ag 107 Ag 109 Cd 111 Cd 114 > In 115 Sb 121 Ba 135 > Tb 159 Ho 165 Tl 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 So-1 45	Γ.			QC Std % Recovery		Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
AI 27 > Sc 45 117.156 V 51 Cr 52 Mn 55 Co 59 Ni 60 Cu 65 Zn 66 > Ge 72 As 75 Se 82 Y 89 Mo 98 Ag 109 Cd 111 Cd 111 Sb 121 Ba 135 > Tb 159 Ba 135 Ti 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45	1				117.090			
SC	Ė							
V 51 Cr 52 Mn 55 Co 59 Ni 60 Cu 65 Zn 66 > Ge 72 As 75 Se 82 Y 89 Mo 98 Ag 107 Ag 109 Cd 111 Cd 114 > In 115 Sb 121 Ba 135 > Tb 159 Bo.126 Ho 165 T1 205 Pb 208 Bi 209 Th 232 U 238 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45	>				117.156			
Cr 52 Mn 55 Co 59 Ni 60 Cu 65 Zn 66 > Ge 72 109.194 As 75 L Se 82 Y 89 Mo 98 Ag 107 Ag 109 Cd 111 Cd 114 > In 115 Sb 121 Ba 135 > Tb 159 Ho 165 Ti 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 Sc-1 45	i							
Mn	i ·							
Ni 60	ĺ	Mn					•	
L Cu 65 Zn 66 > Ge 72 As 75 L Se 82 Y 89 Mo 98 Ag 107 Ag 109 Cd 111 Cd 114 > In 115 Sb 121 Ba 135 > Tb 159 Ho 165 TI 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 Sc-1 45		Co	59					
Zn 66 > Ge 72 As 75 Se 82 Y 89 Mo 98 Ag 109 Cd 111 Cd 114 > In 115 L Sb 121 5 Ba 135 > Tb 159 Ba 135 Tb 159 Ba 135 Pb 208 Bi 209 Th 232 Mg 24 K 39 Ca 44 Fe 54 Sc-1 45								
> Ge	L							
As	Γ							
L Se 82 Y 89 Mo 98 Ag 107 Ag 109 Cd 111 Cd 114 In 115 Sb 121 Ba 135 > Tb 159 Ba 135 Image: No. 126 No. 126 Image: No. 126 No. 126 Image: No. 127 No. 126 Image: No. 128 No. 126 Image: No. 128 No. 126 Image: No. 128 No. 126 Image: No. 128 No. 126 Image: No. 128 No. 126 Image: No. 128 No. 126 Image: No. 128 No. 126 Image: No. 128 No. 128 Image: No. 128 No. 128 Image: No. 128 No. 128 Image: No. 128 No. 128 Image: No. 128 No. 128 Image: No. 128 No. 128 Image: No. 128 No. 128 Image: No. 128 No. 128 Image: No. 128 N	>				109.194			
Y 89 Mo 98 Ag 107 Ag 109 Cd 111 Cd 114 > In 115 Sb 121 Ba 135 > Tb 159 Ba 135 > Tb 159 Ba 1026 Ho 165 TI 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45								
Mo 98 Ag 107 Ag 109 Cd 111 Cd 114 In 115 97.750 Sb 121 Ba 135 In 159 80.126 In 165 In 205 In 208 In 209 In 232 In 23 In 39 In Ca 44 4 In 55 1 45	L							
Ag 107 Ag 109 Cd 111 Cd 114 > In 115 97.750 Sb 121 Ba 135 > Tb 159 80.126 Ho 165 Tl 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45	_		89					
Ag 109 Cd 111 Cd 114 In 115 Sb 121 Ba 135 Tb 159 Bo 105 TI 205 Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 Sc-1 45				·		•		,
Cd 111 Cd 114 > In 115 97.750 L Sb 121 Ba 135 80.126 Ho 165 11 TI 205 9b Pb 208 8i Bi 209 1h Th 232 1 L U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45								
Cd 114 > In 115 97.750 L Sb 121 F Ba 135 > Tb 159 80.126 Ho 165 TI 205 Pb 208 Bi 209 Th 232 L U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45					•			
> In	 							
L Sb 121 □ Ba 135 > Tb 159 80.126 □ Ho 165 □ Tl 205 □ Pb 208 □ Bi 209 □ Th 232 L U 238 □ Na 23 □ Mg 24 □ K 39 □ Ca 44 □ Fe 54 □ Sc-1 45	 -				97 750			
□ Ba 135 □ Tb 159 □ Ho 165 □ Tl 205 □ Pb 208 □ Bi 209 □ Th 232 □ U 238 □ Na 23 □ Mg 24 □ K 39 □ Ca 44 □ Fe 54 □ Sc-1 45	> 				97.730			
> Tb	L [•		•		
Ho					80 126			
TI					33.123			
Pb 208 Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 > Sc-1 45	i							
Bi 209 Th 232 U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 Sc-1 45	.				-			
U 238 Na 23 Mg 24 K 39 Ca 44 Fe 54 L> Sc-1 45	i .							
Na 23 Mg 24 K 39 Ca 44 Fe 54 Sc-1 45								
Mg 24 K 39 Ca 44 Fe 54 _{>} Sc-1 45								
K 39 Ca 44 Fe 54 L> Sc-1 45								
Ca 44 Fe 54 > Sc-1 45								
Fe 54 > Sc-1 45								
L> Sc-1 45					•			
L> Sc-1 45 Kr 83								
Kr 83			45					
		Kr	83					

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-30.46496

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8878.530	3.878	8878.530			ug/L
Ĺ	Ве	9	5.000	88.192	-0.000	-0.06063	115.55	ug/L
	Al	27	5334.500	3.608	0.020	1.39118	2.37	ug/L
>	Sc	45	133713.826	3.009	133713.826			ug/L
- [V	51	-352.152	342.228	0.020	0.72321	44.80	ug/L
	Cr	52	10283.495	8.642	0.025	1.00886	17.95	ug/L
	Mn	55	621469.199	5.145	4.634	122.65635	5.31	ug/L
	Со	59	584.472	3.243	0.004	0.11345	0.36	ug/L
-	Ni	60	-233.826	21.935	-0.002	-0.30883	14.66	ug/L
Ĺ	Cu	65	367.789	7.256	0.001	0.12164	13.85	ug/L
Ţ	Zn	66	2783.953	2.550	0.025	4.15350	5.99	ug/L
>	Ge	72	89155.268	3.625	89155.268			ug/L
	As	75	-232.576	58.561	0.001	0.08073	197.40	ug/L
L.	Se	82	15.667	63.830	-0.000	-0.20914	65.58	ug/L
	Υ	89	301.674	7.054	272.785			ug/L
Γ	Мо	98	1763.971	2.939	0.006	0.78553	4.73	ug/L
ł	Ag	107	5.000	33.333	-0.000	-0.00609	9.39	ug/L
	Ag	109	5.556	96.437	-0.000	-0.00461	38.83	ug/L
	Cd	111	40.003	15.278	0.000	0.04399	21.34	ug/L
1	Cd	114	82.716	13.342	0.000	0.02196	28.69	ug/L
>	In	115	281511.273	1.448	281511.273			ug/L
L	Sb	121	50.556	40.955	-0.000	-0.00793	119.90	ug/L
Γ	Ва	135	904.510	2.334	0.005	2.02433	1.56	ug/L
>	Tb	159	192286.662	1.052	192286.662			ug/L
	Ho	165	12.222	7.873	0.000			ug/L
	TI	205	20.000	30.046	-0.000	-0.04595	8.17	ug/L
ł	Pb	208	383.338	7.184	0.001	0.11209	13.07	ug/L
	Bi	209	8.333	34.641	-0.000			ug/L
	Th	232	10.000	0.000	-0.000	-0.00512	1.02	ug/L
Ĺ	U	238	171.113	5.707	0.001	0.07938	6.08	ug/L
Γ	Na	23	2190425.483	6.112	16.237	1.20538	9.33	mg/L
	Mg	24	2326187.614	5.996	17.392	2.05100	8.21	mg/L
	K	39	2629309.334	6.471	13.688	0.59398	5.43	mg/L
	Са	44	2426027.016	7.678	17.972	24.77537	6.60	mg/L
	Fe	54	63371.653	4.555	0.258	0.13892	6.43	mg/L
_>	Sc-1	45	133713.826	3.009	133713.826			mg/L
	Kr	83	100.556	4.785	17.778			mg/L

Sample ID: C131107-30

Report Date/Time: Tuesday, December 10, 2013 12:02:47

				QO Odicalatet	values		
۲۷	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 116.013	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Be	9		110.013			¥
L	Al	27					
>	Sc	45		110.049			
>	V	51		110.049			
; 	V Cr	52					
	Mn	55					
	Co	59					
- 1	Ni	60					
ì	Cu	65					
F	Zn	66					
>	Ge	72		110.268			
ĺ	As	75		-			
i	Se	82					
_	Υ	89					
. [Мо	98					
i	Ag	107					
j	Ag	109					
ĺ	Cd	111			•		
ĺ	Cd	114					
>	In	115		100.917			
L	Sb	121					
Γ	Ва	135					
>	Tb ·	159		85.305			
	Но	165					
	TI	205					
	Pb	208					
ĺ	Bi	209	•				
	Th	232					
Ĺ	U	238		•			
	Na	23					
- '	Mg	24					
	K	39					
1	Са	44					
[Fe	54					
<u>_</u> >	Sc-1	45					•
	Kr	83					

Sample ID: Blank

Sample Date/Time: Tuesday, December 10, 2013 12:04:14

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312040

Method File: C:\Elandata\Method\esat2010.mth
Dataset File: C:\Elandata\Dataset\Default\Blank.46497

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8171.467	6.977	8171.467			ug/L
İ	Ве	9	1.667	173.205	-0.001	-0.10985	46.31	ug/L
Ē	Al	27	1728.018	8.523	-0.007	-0.50876	17.02	ug/L
>	Sc	45	132705.380	1.525	132705.380			ug/L
İ	V	51	-1328.591	62.609	0.013	0.45177	50.35	ug/L
	Cr	52	7493.402	8.979	0.004	0.17612	138.50	ug/L
-	Mn	55	2341.385	27.122	0.003	0.06672	183.84	ug/L
1	Co	59	30.556	11.355	-0.000	-0.00344	21.32	ug/L
	Ni	60	46.183	2.330	-0.000	-0.03393	4.25	ug/L
L	Cu	65	67.778	20.028	-0.001	-0.13029	9.52	ug/L
Γ	Zn	66	215.559	10.723	-0.004	-0.70346	6.69	ug/L
>	Ge	72	91603.873	2.307	91603.873			ug/L
	As	75	-127.806	45.113	0.002	0.21497	31.70	ug/L
L	Se	82	28.334	17.569	-0.000	-0.05563	102.96	ug/L
	Υ	89	28.889	14.519	0.000			ug/L
Γ	Mo	98	70.259	3.117	-0.000	-0.06178	0.37	ug/L
	Ag	107	7.222	26.647	-0.000	-0.00537	12.75	ug/L
	Ag	109	9.444	20.377	-0.000	-0.00332	16.38	ug/L
	Cd	111	7.506	43.601	-0.000	-0.00187	257.82	ug/L
	Cd	114	13.694	141.166	-0.000	-0.02157	54.46	ug/L
>	In	115	284431.486	3.062	284431.486			ug/L
Ĺ	Sb	121	42.778	25.350	-0.000	-0.01160	44.99	ug/L
	Ва	135	3.333	86.603	-0.000	-0.03050	20.80	ug/L
>	Tb	159	198258.660	1.513	198258.660			ug/L
ļ	Но	165	7.778	32.733	-0.000			ug/L
	TI	205	5.556	75.498	-0.000	-0.05508	4.72	ug/L
1	Pb	208	135.001	3.704	-0.000	-0.00477	28.36	ug/L
	Bi	209	7.778	32.733	-0.000			ug/L
1	Th	232	2.222	43.301	-0.000	-0.00899	5.16	ug/L
Ļ	U	238	0.556	173.205	-0.000	-0.00271	16.31	ug/L
1	Na	23	5244.992	9.872	-0.135	-0.01006	3.05	mg/L
	Mg	24	3767.802	1.085	0.001	0.00008	61.83	mg/L
ļ	K	39	725185.369	2.242	-0.496	-0.02152	41.43	mg/L
1	Ca	44	19193.900	3.780	-0.022	-0.03080	32.77	mg/L
	Fe	54	32296.670	13.919	0.028	0.01490	134.67	mg/L
_>	Sc-1	45	132705.380	1.525	132705.380			mg/L
	Kr	83	77.778	12.917	-5.000		-	mg/L

Sample ID: Blank

Report Date/Time: Tuesday, December 10, 2013 12:05:50

					QO Odiodiatod	varaes		
	Γ.	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 106.774	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
	>	Be	9		100.774			
	L	Al	27					,
	1	Sc	45		109.219			
	>	V	51		109.219			
	1	v Cr	52					
	1	Mn	55					
	1	Co	59					-
	ĺ	Ni .	60					
		Cu	65					
	È	Zn	66					
	>	Ge	72	•	113.297			
		As	75		110.207			•
	1	Se	82					
	_	Y	89					
	Γ	Мо	98					
	İ	Ag	107					
	İ	Ag	109					
	İ	Cq	111					
	İ	Cd	114					
	>	In ·	115	,	101.964			
	ĺ	Sb	121					
	Ī	Ва	135					
	>	Tb	159		87.955			
	İ	Но	165					
		TI	205					
		Pb	208					
		Bi	209					
		Th	232					
l	L	U	238					
		Na	23					
		Mg	24					
		K	39					
		Са	44					
-		Fe	54					
	_>	Sc-1	45					
		Kr	83					

Sample ID: SEQ-CCV

Sample Date/Time: Tuesday, December 10, 2013 12:07:16

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-CCV.46498

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8432.367	6.363	8432.367			ug/L
L	Be	9	3101.881	1.854	0.368	50.37527	6.06	ug/L
Γ	Al	27	456859.101	2.033	3.426	242.33958	7.28	ug/L
>	Sc	45	133134.983	9.043	133134.983			ug/L
	V	51	173118.732	1.032	1.329	47.55743	8.11	ug/L
	Cr	52	160126.844	3.990	1.157	47.48931	10.78	ug/L
	Mn	55	243595.951	3.511	1.821	48.18860	5.60	ug/L
	Co	59	222555.151	3.195	1.682	47.48314	10.81	ug/L
	Ni	60	48255.400	4.008	0.365	47.93626	12.76	ug/L
L	Cu	65	55733.007	1.940	0.419	47.21999	9.87	ug/L
Γ	Zn	66	28819.692	3.853	0.304	51.02638	7.03	ug/L
>	Ge	72	93307.081	9.475	93307.081			ug/L
	As	75	40872.463	2.166	0.443	50.20840	7.60	ug/L
L	Se	82	4059.475	4.769	0.043	51.07051	10.17	ug/L
	Υ	89	42.778	4.499	13.889		•	ug/L
Γ	Мо	98	101393.034	1.976	0.360	50.61217	3.31	ug/L
	Ag	107	154984.248	2.236	0.551	50.92586	0.80	ug/L
	Ag	109	146627.436	1.301	0.521	49.94895	2.58	ug/L
	Cd	111	36029.434	4.490	0.128	50.71975	5.76	ug/L
	Cd	114	78108.708	1.599	0.277	48.97180	2.79	ug/L
>	In	115	281453.808	1.447	281453.808			ug/L
L	Sb	121	110922.510	1.755	0.394	49.73710	3.09	ug/L
Γ	Ва	135	24911.226	1.941	0.123	53.81129	1.87	ug/L
>	Tb	159	202887.160	3.283	202887.160			ug/L
	Но	165	5.556	17.321	-0.000			ug/L
	TI	205	92226.247	2.231	0.454	54.73911	4.49	ug/L
1	Pb	208	122699.632	1.974	0.604	53.74584	2.45	ug/L
1	Bi	209	18.333	47.238	0.000			ug/L
	Th	232	118504.038	0.536	0.584	55.42501	3.33	ug/L
L	U ·	238	118484.431	1.758	0.584	54.07001	3.58	ug/L
Γ	Na	23	8600684.895	8.665	64.680	4.80168	10.68	mg/L
	Mg	24	5695034.412	2.784	42.911	5.06043	6.29	mg/L
	K	39	15365306.843	2.611	109.980	4.77235	8.43	mg/L
	Ca	44	466733.794	13.841	3.332	4.59299	6.83	mg/L
	Fe	54	1258560.225	12.247	9.219	4.96557	3.30	mg/L
L>	Sc-1	45	133134.983	9.043	133134.983			mg/L
	Kr	83	85.001	7.070	2.222			mg/L

Sample ID: SEQ-CCV

Report Date/Time: Tuesday, December 10, 2013 12:08:52

				QO Odiodiaico	values		
Г.	Analyte Li	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Ве	6 9	100 751	110.184			
L	Al	9 27	100.751				
1.	Sc	45	96.936	400.570			
>	V		05.445	109.572			
ļ	v Cr	51	95.115				
		52 55	94.979				
-	Mn	55	96.377				a - 1
1	Co	59	94.966				
- 1	Ni	60	95.873				
Ļ	Cu	65 66	94.440				
l	Zn	66	102.053	. 445.400			
>	Ge	72	100 117	115.403			
1	As	75	100.417				
L	Se	82	102.141				
г	Y	89	404.004				
	Mo	98	101.224				
	Ag	107	101.852				
	Ag	109	99.898				e.
	Cd	111	101.439				
	Cd	114		400.000			
>	ln O	115	00.474	100.896			
Ļ	Sb	121	99.474	,			
]	Ba - -	135	107.623				
>	Tb	159		90.008			
ļ	Ho	165	400 470				
ļ	TI	205	109.478				
	Pb	208	107.492				
	Bi ∞	209	440.050				
	Th	232	110.850		•		
L	U	238	108.140		•		
	Na	23	96.034				
	Mg	24	101.209				
	K	39	95.447				
	Ca	44	91.860				
	Fe 1	54	99.311	•			
_>	Sc-1	45	•				
	Kr	83					

Sample ID: SEQ-CCB

Sample Date/Time: Tuesday, December 10, 2013 12:10:33

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-CCB.46499

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

				Concentiation	Suits			
	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8102.476	3.796	8102.476		•	ug/L
Ĺ	Be	9	5.556	17.321	-0.000	-0.04560	27.38	ug/L
Γ	Al	27	2680.019	1.829	0.001	0.05039	60.02	ug/L
>	Sc	45	128024.131	1.079	128024.131			ug/L
	٧	51	-1131.096	45.101	0.014	0.49589	28.16	ug/L
ĺ	Cr	52	6681.932	10.910	-0.000	-0.00188	12158.13	ug/L
ĺ	Mn	55	2062.203	31.383	0.001	0.02662	493.78	ug/L
ĺ	Co	59	68.334	7.317	0.000	0.00512	19.67	ug/L
	Ni	60	73.145	6.679	-0.000	-0.00454	128.34	ug/L
ĺ	Cu	65	251.116	10.627	0.000	0.03301	73.14	ug/L
Ē	Zn	66	522.244	9.410	-0.001	-0.14572	70.56	ug/L
>	Ge	72	92127.491	1.696	92127.491			ug/L
İ	As	75	-115.359	196.514	0.002	0.23272	119.59	ug/L
į	Se	82	20.889	48.934	-0.000	-0.15261	83.50	ug/L
_	Υ	89	31.111	25.317	2.222			ug/L
Γ	Мо	98	378.109	17.590	0.001	0.08799	37.49	ug/L
ĺ	Ag	107	42.778	16.221	0.000	0.00597	35.42	ug/L
ĺ	Ag	109	48.334	24.866	0.000	0.00960	43.09	ug/L
ĺ	Cd	111	13.758	31.682	0.000	0.00648	89.13	ug/L
ĺ	Cd	114	42.245	26.526	-0.000	-0.00394	180.92	ug/L
>	In	115	288413.876	1.270	288413.876			ug/L
Ĺ	Sb	121	295.563	8.779	0.001	0.09870	11.50	ug/L
Ī	Ва	135	26.111	26.575	0.000	0.01781	78.75	ug/L
>	Tb	159	205184.665	3.141	205184.665			ug/L
İ	Ho	165	7.778	44.607	-0.000			ug/L
İ	TI	205	110.557	13.171	0.000	0.00642	131.59	ug/L
j	Pb	208	165.001	10.497	0.000	0.00612	97.31	ug/L
ĺ	Bi	209	13.333	33.072	0.000	*		ug/L
ĺ	Th	232	47.222	5.391	0.000	0.01178	10.30	ug/L
Ĺ	U	238	23.333	56.695	0.000	0.00755	79.31	ug/L
Ē	Na	23	28175.468	10.179	0.045	0.00335	51.22	mg/L
İ	Mg	24	4640.057	4.265	0.009	0.00101	22.17	mg/L
į	ĸ	39	773294.860	2.839	0.077	0.00336	188.51	mg/L
j	Ca	44	18858.981	2.886	-0.020	-0.02717	25.65	mg/L
ĺ	Fe	54	30127.288	13.461	0.019	0.01043	166.05	mg/L
Ĺ>	Sc-1	45	128024.131	1.079	128024.131			mg/L
	Kr	83	110.001	16.035	27.223			mg/L

Sample ID: SEQ-CCB

Report Date/Time: Tuesday, December 10, 2013 12:12:08

				QC Calculated	i vaiues		
۲۷	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 105.873	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Be	9		105.673			
F	Al	27					•
>	Sc	45		105.366			
	V	51		100.500			
i	Cr	52					
i	Mn	55					
i	Со	59	*				
- j -	Ni	60	-				
L	Cu	65					
Γ	Zn	66					
>	Ge	72		113.944			
	As	75					
L	Se	82					
_	Υ	89					
	Мо	98					
	Ag	107					
	Ag	109					
l I	Cd Cd	111					
1.		114 115		103.391			
>	In Sb	121		103.391			
.[Ba	135					
>	Tb	159		91.027			
	Но	165		01.027			
i	TI	205					
i	Pb	208					
İ	Bi	209		•			
	Th	232					
L	U	238	•				
Γ	Na	23					
	Mg	24		4			
	K	39		,			
	Ca	44					
	Fe	54					
L>	Sc-1	45					
	Kr	83					

Sample ID: 1312035-BLK2 @5X

Sample Date/Time: Tuesday, December 10, 2013 12:27:17

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\1312035-BLK2 @5X.46500

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

				Concentiation	courto			
	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
Γ>	Li	6	8475.190	2.709	8475.190			ug/L
L	Be	9	3.889	89.214	-0.001	-0.07535	76.01	ug/L
Γ	Αl	27	1582.425	12.838	-0.008	-0.58912	17.98	ug/L
>	Sc	45	133029.862	1.174	133029.862			ug/L
	V	51	-7390.318	38.329	-0.033	-1.17261	63.31	ug/L
	Cr	52	8750.053	10.257	0.014	0.55467	46.48	ug/L
	Mn	55	1020.310	12.076	-0.007	-0.19631	12.89	ug/L
	Co	59	28.889	17.625	-0.000	-0.00381	28.14	ug/L
- 1	Ni	60	19.044	28.663	-0.000	-0.06083	9.28	ug/L
Ĺ	Cu	65	68.334	7.317	-0.001	-0.13008	3.13	ug/L
Γ	Zn	66	346.676	2.404	-0.003	-0.46534	4.80	ug/L
>	Ge	72	91928.631	2.498	91928.631			ug/L
ĺ.	As	75	-446.801	67.356	-0.002	-0.18179	209.54	ug/L
Ĺ	Se	,82	32.667	31.960	0.000	0.00047	29968.48	ug/L
_	Υ	89	25.000	24.037	-3.889			ug/L
٠ ٢	Мо	98	49.269	18.835	-0.001	-0.07225	6.39	ug/L
j	Ag	107	3.333	100.000	-0.000	-0.00667	15.93	ug/L
ĺ	Ag	109	8.333	20.000	-0.000	-0.00370	14.04	ug/L
j	Cd	111	4.607	52.156	-0.000	-0.00596	57.34	ug/L
İ	Cd	114	16.927	43.010	-0.000	-0.01944	22.25	ug/L
j>	In	115	285506.250	1.512	285506.250			ug/L
Ĺ	Sb	121	59.445	36.160	-0.000	-0.00438	219.60	ug/L
Ī	Ва	135	8.889	10.825	-0.000	-0.01797	12.02	ug/L
İ>	Tb	159	196345.376	0.561	196345.376			ug/L
Ì	Но	165	5.000	33.333	-0.000			ug/L
i	TI	205	5.556	45.826	-0.000	-0.05507	2.84	ug/L
İ	Pb	208	91.111	10.075	-0.000	-0.02406	16.90	ug/L
İ	Bi	209	8.889	43.301	-0.000			ug/L
j	Th	232	3.333	100.000	-0.000	-0.00844	19.09	ug/L
İ	U	238	1.111	86.603	-0.000	-0.00244	18.64	ug/L
Ī	Na	23	8707.741	5.509	-0.110	-0.00813	3.97	mg/L
İ	Mg	24	2158.152	8.192	-0.011	-0.00135	12.99	mg/L
į.	ĸ	39	741763.635	1.071	-0.387	-0.01677	7.91	mg/L
İ	Ca	44	19187.204	3.194	-0.023	-0.03144	19.04	mg/Ľ
i	Fe	54	33809.239	7.545	0.038	0.02048	44.39	mg/L
į>	- 4	45	133029.862	1.174	133029.862			mg/L
	Kr	83	85.556	12.971	2.778			mg/L

Sample ID: 1312035-BLK2 @5X

Report Date/Time: Tuesday, December 10, 2013 12:28:52

					QO Calcalated	Values		
	_	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
	>	Li Be	6		110.743	•		
	L	Al	9					
	l .	Sc	27 45		100 100			
	>	V	51		109.486			
	 	v Cr	52					
	 	Mn	55					
	 	Co	59					
		Ni	60	· ·				
ĺ		Cu	65					
[Ė	Zn	66					
i	>	Ge	72		113.698			
i		As	75					
i		Se	82					•
•	-	Υ	89					
	-	Мо	98					
ĺ		Ag	107					
1		Ag	109					
		Cd	111					
		Cd	114					
	>	In	115		102.349			
L	_	Sb	121					
		Ва	135					
	>	Tb	159		87.106			
		Но	165					
		TI	205					
		Pb	208					
-		Bi	209					
- [Th	232					
Ļ	:	U	238					
1		Na	23					
1		Mg ⊭	24					
1		K Ca	39 44					•
		Fe	54					
1		Sc-1	45					
L		Kr	83					
		LM	00					

Sample ID: C131107-02 @10X

Sample Date/Time: Tuesday, December 10, 2013 12:30:19

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-02 @10X.46501

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8904.673	1.209	8904.673			ug/L
Ĺ	Be	9	21.667	33.530	0.001	0.19330	56.22	ug/L
	Αl	. 27	3708298.561	4.911	25.213	1783.30815	7.55	ug/L
>	Sc	45	147175.654	3.412	147175.654			ug/L
	V	51	7430.721	18.987	0.073	2.61285	11.32	ug/L
	Cr -	52	17706.789	6.729	0.068	2.80467	17.92	ug/L
	Mn	55	1633296.390	2.734	11.084	293.35989	0.70	ug/L
.	Co	59	7660.810	4.568	0.052	1.45989	4.21	ug/L
1	Ni	60	2074.202	14.249	0.014	1.78037	18.58	ug/L
L	Cu	65	6475.049	11.609	0.042	4.78263	15.57	ug/L
Γ.	Zn	66	20903.886	6.479	0.227	38.10262	6.11	ug/L
>	Ge	72	89602.813	1.474	89602.813			ug/L
	As	75.	588.933	15.853	0.010	1.11549	9.73	ug/L
L	Se	82	39.000	47.334	0.000	0.09573	259.37	ug/L
	Υ	89	34586.040	2.894	34557.151			ug/L
Γ	Мо	98	1991.939	1.171	0.007	0.93227	1.87	ug/L
	Ag ·	107	502.242	4.982	0.002	0.16274	4.54	ug/L
1	Ag	109	446.127	8.652	0.002	0.15044	8.59	ug/L
	Cd	111	170.813	27.227	0.001	0.23522	27.20	ug/L
-	Cd	114	356.158	2.755	0.001	0.20084	1.12	ug/L
>	In	115	272497.271	1.867	272497.271			ug/L
L	Sb	121	224.449	14.596	0.001	0.07318	18.84	ug/L
Γ	Ва	135	13684.413	1.881	0.074	32.51649	1.42	ug/L
>	Tb	159	184284.147	0.760	184284.147			ug/L
	Но	165	631.143	3.344	0.003			ug/L
	TI	205	86.667	11.698	-0.000	-0.00182	372.69	ug/L
	Pb	208	38579.665	2.167	0.209	18.55375	1.91	ug/L
	Bi	209	165.002	10.497	0.001			ug/L
	Th	232	2153.704	1.015	0.012	1.09843	1.73	ug/L
L	U	238	1122.323	5.172	0.006	0.56045	4.61	ug/L
Γ	Na	23	2352555.023	4.963	15.838	1.17578	8.21	mg/L
	Mg	24	3555768.479	1.984	24.157	2.84880	4.78	mg/L
	K	39	3819991.385	5.778	20.044	0.86978	11.83	mg/L
1.	Ca	44	2879725.956	5.882	19.422	26.77408	7.54	mg/L
	Fe	54	876446.911	5.308	5.747	3.09558	7.80	mg/L
<u>_</u> >	Sc-1	45	147175.654	3.412	147175.654			mg/L
	Kr	83	92.223	9.954	9.445			mg/L

Sample ID: C131107-02 @10X

Report Date/Time: Tuesday, December 10, 2013 12:31:55

			•	QO Odiodiatot	i Varacs		
Г	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>		6		116.355			
Ļ	Be	9					
ļ	Al	27		4			•
>		45		121.128			
1	V	51					
- !	Cr	52					
!	Mn	55					
ļ	Со	59					
ļ	Ni	60					
Ĺ	Cu	65					
-	Zn	66					
>	Ge	72		110.822			
	As	. 75					
L	Se	82					
_	Y	89					
•	Мо	98					
	Ag	107					
	Ag	109					
	Cd	111		· ·			
	Cd	114					
>	ln	115		97.686			
L	Sb	121		•			
Γ	Ва	135					
>	Tb	159		81.755			
	Ho	165					
	TI	205					
	Pb	208					
	Bi	209					
	Th	232					
L	U	238					
Γ	Na	23			*		
	Mg	24					
1	K	39					
	Ca	44					
	Fe	54		•			
_>	Sc-1	45					
	Kr	83					

Sample ID: 1312035-DUP2 @10X

Sample Date/Time: Tuesday, December 10, 2013 12:33:21

Sample Type: Duplicate of 2

Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\1312035-DUP2 @10X.46502

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8737.216	2.235	8737.216			ug/L
L	Ве	9	13.889	54.111	0.001	0.08037	153.02	ug/L
Γ	Al -	27	3583741.297	6.824	23.704	1676.62093	8.14	ug/L
>	Sc	45	151174.828	2.243	151174.828			ug/L
	V	51	8326.742	18.576	0.078	2.78567	14.40	ug/L
	Cr	52	16923.439	1.156	0.060	2.45256	6.21	ug/L
	Mn.	55	1664499.489	6.441	10.992	290.92136	5.24	ug/L
	Co	59	7679.176	7.382	0.050	1.42449	7.83	ug/L
-	Ni	60	1958.780	11.102	0.012	1.62695	13.80	ug/L
L	Cu	65	6248.123	2.887	0.040	4.46906	5.12	ug/L
Γ	Zn	66	19876.599	4.516	0.216	36.29205	3.59	ug/L
>	Ge	72	89478.835	7.443	89478.835			ug/L
	As	75	735.924	2.458	0.012	1.30670	5.21	ug/L
L	Se	82	25.334	91.247	-0.000	-0.08431	360.49	ug/L
	Υ	89	33202.431	2.193	33173.542			ug/L
Γ	Mo	98	1956.311	4.557	0.007	0.93934	8.47	ug/L
	Ag	107	465.017	11.817	0.002	0.15359	9.51	ug/L
	Ag	109	423.903	8.176	0.002	0.14607	6.01	ug/L
	Cd	111	177.161	4.450	0.001	0.25159	7.25	ug/L
1.	Cd	114	341.617	7.298	0.001	0.19686	9.09	ug/L
>	In	115	266167.163	3.069	266167.163			ug/L
L	Sb	121	190.558	14.003	0.000	0.05970	20.21	ug/L
Γ	Ва	135	13445.563	2.171	0.075	32.91577	2.64	ug/L
>	Tb	159	178895.936	0.760	178895.936			ug/L
	Но	165	616.697	3.545	0.003			ug/L
	TI	205	103.890	10.314	0.000	0.01146	62.65	ug/L
	Pb	208	38161.673	0.206	0.213	18.90798	0.97	ug/L
	Bi [.]	209	192.781	12.114	0.001			ug/L
	Th-	232	2229.287	2.027	0.012	1.17195	2.79	ug/L
Ĺ	U	238	1061.757	6.056	0.006	0.54620	6.05	ug/L
F	Na	23	2204519.282	4.659	14.402	1.06919	2.44	mg/L
-	Mg	24	3459367.320	8.133	22.845	2.69407	6.85	mg/L
1	K	39	3809206.374	2.407	19.251	0.83536	5.90	mg/L
	Ca	44	2908427.275	1.823	19.073	26.29266	0.42	mg/L
-	Fe	54	841746.395	7.297	5.348	2.88071	5.48	mg/L
_>	Sc-1	45	151174.828	2.243	151174.828			mg/L
	Kr	83	104.445	23.253	21.667			mg/L

Sample ID: 1312035-DUP2 @10X

Report Date/Time: Tuesday, December 10, 2013 12:34:57

				QO Odrodratoc	i varaos		
г	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
[>		6		114.167			
Ļ	Be	9					82.535
	AI Ca	27		404.440			6.167
>		45		124.419			
-	V	51					6.403
-	Cr	52					13.395
	Mn	55					0.835
1	Co	59					2.454
-	Ni	60					9.005
Ļ	Cu	65					6.779
	Zn .	66					4.867
>		72		110.668			
ļ	As	75					15.788
L	Se	82					3153.552
_	Υ	89					
ı.	Мо	98					0.755
ļ	Ag	107					5.786
ļ	Ag	109	•				2.950
ļ	Cd	111					6.728
	Cd	114					2.001
>	In	115		95.416			
L	Sb	121					20.289
Γ	Ва	135					1.220
>	Tb	159		79.365			
	Но	165					
	TI	205					275.656
	Pb	208					1.891
	Bi	209					
	Th	232					6.477
L	U	238					2.577
Γ	Na	23					9.496
	Mg	24		,	•		5.583
	K	39					4.037
	Ca	44					1.814
	Fe	54					7.191
_>	Sc-1	45					
	Kr	83					

Sample ID: SEQ-SRD1 @50X

Sample Date/Time: Tuesday, December 10, 2013 12:36:24

Sample Type: Dilution - DF:5 of 2

Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-SRD1 @50X.46503

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

[>			Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>		6						
		6	8644.308	1.125	8644.308			ug/L
L	Be	9	12.222	55.111	0.000	0.05508	197.70	ug/L
Γ	Αl	27	732628.896	4.449	5.257	371.81838	2.89	ug/L
>	. Sc	45	138809.007	2.481	138809.007			ug/L
	V	51	53.646	293.858	0.023	0.82427	4.88	ug/L
1	Cr	52	8629.303	6.546	0.010	0.41117	55.17	ug/L
Ì	Mn	55	322290.478	2.392	2.307	61.05680	1.53	ug/L
ĺ	Co	59	1481.842	3.083	0.010	0.29140	1.11	ug/L
ĺ	Ni	60	409.809	19.828	0.002	0.30866	24.97	ug/L
Ĺ	Cu	65	1321.251	6.354	0.008	0.88541	10.81	ug/L
Ī	Zn	66	4221.427	4.308	0.041	6.89327	5.95	ug/L
>	Ge	72	88793.033	1.383	88793.033			ug/L
ĺ	As	75	-152.883	119.985	0.002	0.17515	135.68	ug/L
Ĺ	Se	82	24.445	57.311	-0.000	-0.09392	201.11	ug/L
_	Υ	. 89	6932.176	1.701	6903.287			ug/L
Γ	Мо	98	415.151	7.408	0.001	0.11577	14.29	ug/L
İ	Ag	107	89.445	19.924	0.000	0.02229	25.56	ug/L
j	Ag	109	85.001	9.804	0.000	0.02315	14.60	ug/L
İ	Cd	111	39.853	13.345	0.000	0.04498	16.82	ug/L
İ	Cd	114	68.257	34.672	0.000	0.01409	113.99	ug/L
i>	. In	115	275254.238	1.688	275254.238			ug/L
Ĺ	Sb	121	60.000	15.466	-0.000	-0.00319	121.74	ug/L
Ī	Ва	135	2802.851	1.522	0.014	6.32973	2.80	ug/L
į,	. Tb	159	193044.644	2.189	193044.644			ug/L
İ	Но	165	127.224	10.670	0.001			ug/L
i	Ti	205	28.889	26.015	-0.000	-0.04052	10.58	ug/L
i	Pb	208	8125.396	1.270	0.041	3.67873	1.00	ug/L
İ	Bi	209	30.556	3.149	0.000			ug/L
j	Th	232	430.570	2.635	0.002	0.20149	1.79	ug/L
İ	U	238	232.782	3.307	0.001	0.10865	4.12	ug/L
Ē	Na	23	467031.206	4.583	3.191	0.23689	5.56	mg/L
i	Mg	24	715463.450	6.148	5.127	0.60458	5.63	mg/L
i	ĸ	39	1326585.724	1.338	3.597	0.15607	4.17	mg/L
i	Ca	44	549830.497	7.962	3.799	5.23683	10.14	mg/L
i	Fe	54	196214.087	6.945	1.199	0.64557	9.41	mg/L
j>		45	138809.007	2.481	138809.007			mg/L
	Kr	83	88.890	23.816	6.111			mg/L

Sample ID: SEQ-SRD1 @50X

Report Date/Time: Tuesday, December 10, 2013 12:37:59

					go caroaratoa	Varaoo		
Г		Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 112.953	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
	>	Be	9		112.955		40.466	
L	:	Al	27				42.466	
1		Sc	45		114.242		4.250	
1	>	V	51		114.242		E7 704	
- 1		v Cr	52				57.734	
 		Mn	55 55				26.699	
1		Co					4.065	
		Ni	59			•	0.198	
			60 65				13.317	
L		Cu	65				7.434	
		Zn	66				9.543	
	>	Ge	72		109.820		04.400	
		As	75				21.493	
L		Se	82				590.552	
-		Y	89					
- !		Мо	98				37.910	
		Ag	107				31.512	
-		Ag	109				23.066	
		Cd .	111				4.395	
		Cd	114				64.917	
1:	>	¹ In	115		98.674			
L		Sb	121	•			121.793	
Γ		Ва	135				2.669	
. :	>	T _b	159		85.641			
-		Но	165					
		TI	205				-11011.937	
		Pb	208				0.863	
ĺ		Bi	209					
İ		Th	232				8.283	
i		U	238				3.071	
Ī		Na	23				0.738	
i		Mg	24				6.112	
i		K	39				10.285	
i		Са	44				2.203	
		Fe	54				4.272	
Ŀ		Sc-1	45	•				
L		Kr	83					
				•				

Sample ID: 1312035-SRM2 @20X

Sample Date/Time: Tuesday, December 10, 2013 12:39:26

Sample Type: Spike - 1 of 1

Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\1312035-SRM2 @20X.46504

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

				Concontitution	Journa			
	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
Γ>	Li	6	9638.541	2.703	9638.541			ug/L
L	Be	9	2731.153	3.362	0.282	38.67216	0.72	ug/L
Γ	Al	27	91105.222	4.837	0.643	45.46071	7.69	ug/L
>	Sc	45	137957.234	9.306	137957.234			ug/L
	V	51	181350.930	7.118	1.339	47.89622	2.06	ug/L
	Cr	52	166359.450	5.268	1.162	47.66895	12.47	ug/L
	Mn	55	254305.326	10.131	1.827	48.36417	1.06	ug/L
	Co	59	225887.716	8.515	1.639	46.26639	5.03	ug/L
1	Ni	60	48792.982	1.428	0.355	46.70918	10.18	ug/L
L	Cu	65	57472.989	5.379	0.417	47.00777	11.42	ug/L
Γ	Zn	66	28862.163	5.196	0.316	53.05767	5.23	ug/L
>	Ge	72	89683.990	6.517	89683.990			ug/L
	As	75	81347.872	1.614	0.912	103.28665	4.91	ug/L
L	Se	82	3888.927	4.789	0.043	50.84396	10.93	ug/L
	Υ	89	41.111	2.341	12.222			ug/L
Γ	Мо	98	96589.905	1.809	0.344	48.34080	2.22	ug/L
-	Ag	107	37545.235	1.786	0.134	12.36893	2.09	ug/L
	Ag	109	36096.175	1.608	0.129	12.32683	2.72	ug/L
	Cd	111	34600.084	2.780	0.123	48.81575	1.15	ug/L
	Cd	114	78104.451	3.527	0.278	49.08776	1.91	ug/L
>	. In	115	280649.228	1.653	280649.228			ug/L
L	Sb	121	225120.228	1.253	0.802	101.25440	2.14	ug/L
Γ	Ва	135	23588.354	3.487	0.121	53.18608	2.34	ug/L
>	Tb	159	194266.563	1.193	194266.563			ug/L
	Но	165	3.889	49.487	-0.000			ug/L
	TI	205	435769.887	2.591	2.243	270.19622	3.80	ug/L
	Pb	208	232491.229	1.088	1.196	106.38707	1.83	ug/L
	Bi	209	7.778	81.127	-0.000			ug/L
	Th	232	10902.835	0.981	0.056	5.31360	2.17	ug/L
L	U	238	11092.059	1.915	0.057	5.27985	0.75	ug/L
	Na	23	86452.918	2.307	0.455	0.03381	13.89	mg/L
ŀ	Mg	24	55064.265	8.288	0.372	0.04384	2.25	mg/L
	K	39	1519301.841	1.442	5.116	0.22199	20.88	mg/L
	Ca	44	25206.286	1.131	0.017	0.02283	86.54	mg/L
	Fe	54	44354.984	10.496	0.105	0.05676	11.07	mg/L
L>	Sc-1	45	137957.234	9.306	137957.234			mg/L
	Kr	83	99.445	16.278	16.667			mg/L

Sample ID: 1312035-SRM2 @20X

Report Date/Time: Tuesday, December 10, 2013 12:41:02

Page 1

				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	varace		
. [>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 125.944	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
	Be	9		120.044	77.495		
F	Al	27			92.100		
>	Sc	45		113.541	32.100		
	V	51		110,041	98.138	•	
i	Cr	52			94.229		
1	Mn	55			97.121		
i	Со	59			92.540		
i	Ni	60			93.540		4
ì	Cu	65			94.276		
F	Zn	66			94.210		
>	Ge	72		110.922			
ľ	As	75		110.022	103.468		
1	Se	82			101.687		
L	Y	89			101.007		
Γ	Mo	98			96.826		
ŀ	Ag	107			99.005		
i	Ag	109		;	98.644		
i	Cd	111			97.643		
i	Cd	114			311313		
>	In	115		100.608			
	Sb	121			101.259		
Ē	Ва	135			106.408	•	
>	Tb	159		86.184			
ĺ	Но	165					•
i	TI	205			108.101		
İ	Pb	208			106.411		
İ	Bi	209					
İ	Th	232					
İ	U	238					
Ē	Na ·	23			83.886		
	Mg	24			90.376		
	ĸ	39			95.503		
	Ca	44			108.532		•
	Fe	54			72.553		
Ĺ>	Sc-1	45					
	Kr	83					

Sample ID: 1312035-MS2 @10X

Sample Date/Time: Tuesday, December 10, 2013 12:42:29

Sample Type: Spike - 2 of 2

Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\1312035-MS2 @10X.46505

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	9159.486	1.795	9159.486			ug/L
Ĺ	Ве	9	1097.319	1.983	0.119	16.27321	1.80	ug/L
	Al	27	4851649.758	7.901	32.837	2322.58761	5.87	ug/L
>	Sc	45	147739.341	6.837	147739.341			ug/L
	V	51	114816.925	8.235	0.799	28.59490	1.43	ug/L
	Cr	52	138714.796	1.125	0.889	36.48818	6.27	ug/L
-	Mn	55	1801433.625	6.973	12.178	322.29896	0.62	ug/L
1	Co	59	94725.083	6.698	0.642	18.11447	6.50	ug/L
	Ni	60	47931.378	7.693	0.325	42.69147	.10.19	ug/L
L	Cu	65	38081.382	4.618	0.257	28.96145	10.27	ug/L
Γ	Zn	66	30388.785	4.185	0.341	57.28140	2.28	ug/L
>	Ge	72	87523.571	5.276	87523.571			ug/L
	As	75	59356.591	5.579	0.681	77.15750	1.86	ug/L
L	Se	82	14501.555	1.971	0.166	195.01308	7.01	ug/L
	Υ	89	32896.401	3.073	32867.512			ug/L
Γ	Мо	98	73053.002	2.088	0.276	38.90127	2.26	ug/L
-	Ag	107	21042.597	2.186	0.080	7.37552	1.16	ug/L
1	Ag	109	19571.751	4.609	0.074	7.11245	5.09	ug/L
	Cd	111	13015.559	3.505	0.049	19.54915	4.30	ug/L
1	Cd	114	29001.128	2.250	0.110	19.39093	2.20	ug/L
>	In	115	263618.822	1.133	263618.822			ug/L
L	Sb	121	123855.829	2.858	0.470	59.29049	3.29	ug/L
Γ	Ва	135	22158.673	2.623	0.124	54.53359	0.25	ug/L
>	Tb	159	178019.738	2.683	178019.738			ug/L
	Но	165	635.032	2.050	0.004		•	ug/L
	TI	205	314312.298	1.506	1.766	212.69705	3.02	ug/L
1	Pb	208	246993.402	1.185	1.387	123.37537	2.06	ug/L
1	Bi	209	158.335	17.708	0.001			ug/L
	Th	232	22328.205	4.730	0.125	11.89236	5.68	ug/L
L	U	238	21518.699	4.593	0.121	11.17859	2.36	ug/L
Γ	Na	23	2575083.832	2.086	17.300	1.28429	5.99	mg/L
1	Mg	24	3593522.301	9.447	24.268	2.86185	2.55	mg/L
	K	39	7207680.230	7.428	43.007	1.86618	12.71	mg/L
	Ca	44	2822484.870	3.008	19.007	26.20119	8.43	mg/L
-	Fe	54	949725.487	6.521	6.226	3.35334	8.16	mg/L
_>	Sc-1	45	147739.341	6.837	147739.341			mg/L
	Kr	83	103.334	12.177	20.556			mg/L

Sample ID: 1312035-MS2 @10X

Report Date/Time: Tuesday, December 10, 2013 12:44:05

				-,			
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 119.685	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
i	Be	9		110,000	40.200		
ř	Al	27			134.820		
>	Sc	45		121.592	134.020		
	V	51		121.392	40.000		
l l	V Cr	52			43.303		
l	Mn	55 55			42.104		
					72.348		
1	Co	59			33.309		
1	Ni	60			40.911		
Ļ	Cu	65			40.298		
	Zn	66	•				
>	Ge	72		108.250			
!	As	75			47.526		
L	Se	82			48.729		
	Υ	89					
Γ	Мо	98			47.461		
	Ag	107			48.085		
	Ag	109			` 46.413		•
	Cd	111			48.285		
	Cd	114					
>	In	115		94.503			
İ	Sb	121			37.011		
Ē	Ва	135			55.043		
>	Tb	159		78.976			* .
ĺ	Но	165					
i	TI	205			53.175		
i	Pb	208			52.411		
İ	Bi	209			02.111	•	
	Th	232					
İ	U	238					
Ļ	Na	23			18.084		
1	Mg	24			3.262		
1	K	39			49.820		
1	Ca	39 44	•				
1	Fe				-286,443		
1.		54			42.960		
L>	Sc-1	45					
	Kr	83					

Sample ID: C131107-05 @5X

Sample Date/Time: Tuesday, December 10, 2013 12:45:32

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-05 @5X.46506

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

				Concentiation N	รอนแอ			
	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	- Li	6	8927.518	9.085	8927.518			ug/L
L	Ве	9	4.444	78.063	-0.000	-0.06754	92.37	ug/L
Γ	ΑI	27	70658.212	4.347	0.467	33.01912	1.30	ug/L
>		45	145074.670	4.209	145074.670			ug/L
	V	51	-5502.838	43.376	-0.016	-0.55727	114.63	ug/L
	Cr	52	8192.611	8.043	0.004	0.17258	70.75	ug/L
	Mn	55	15024.735	4.087	0.089	2.34228	3.01	ug/L
	Co	59	186.114	0.517	0.001	0.02632	5.80	ug/L
	Ni	60	-44.208	127.947	-0.001	-0.12066	44.40	ug/L _
L	Cu	65	243.338	5.171	0.000	0.00090	281.18	ug/L
Γ	Zn	66	512.799	5.081	-0.001	-0.11099	77.14	ug/L
>	Ge	72	87377.139	3.870	87377.139			ug/L
	As	75	-371.259	6.995	-0.001	-0.11015	48.37	ug/L
L	Se	82	26.778	77.902	-0.000	-0.06519	418.82	ug/L
	Υ	89	330.009	21.362	301.120			ug/L
Γ	Мо	98	792.654	13.156	0.002	0.31780	19.64	ug/L
	Ag	107	25.556	56.980	0.000	0.00105	478.53	ug/L
	Ag	109	20.000	22.048	0.000	0.00062	257.95	ug/L
	Cd	111	8.789	94.969	0.000	0.00039	3031.99	ug/L
	Cd	114	22.018	144.303	-0.000	-0.01572	130.64	ug/L
>	In	115	269724.882	1.939	269724.882			ug/L
L	Sb	121	127.224	22.168	0.000	0.02905	49.51	ug/L
Γ	Ва	135	5296.688	1.168	0.029	12.88449	0.82	ug/L
>	Tb	159	179697.273	0.489	179697.273			ug/L
	Ho	165	12.778	32.825	0.000			ug/L
	TI	205	929.515	20.448	0.005	0.56488	23.06	ug/L
1	Pb	208	243.335	11.684	0.001	0.05508	24.77	ug/L
-	Bi	209	8.333	52.915	-0.000			ug/L
	Th	232	26.111	26.575	0.000	0.00374	99.43	ug/L
L	U	238	116.668	17.321	0.001	0.05712	18.30	ug/L
Γ	Na	23	771310.392	2.975	5.149	0.38223	5.75	mg/L
	Mg	24	1112694.151	6.796	7.652	0.90241	8.20	mg/L
	K	39	1157757.291	4.578	2.027	0.08796	24.50	mg/L
	Ca	44	744111.337	3.178	4.970	6.85084	6.17	mg/L
ŀ	Fe	54	43644.462	1.273	0.085	0.04582	11.03	mg/L
L>	Sc-1	45	145074.670	4.209	145074.670			mg/L
	Kr	83	86.667	12.611	3.889			mg/L

Sample ID: C131107-05 @5X

Report Date/Time: Tuesday, December 10, 2013 12:47:08

Page 1

	•						
-	Analyte	Mass ^c	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>		6		116.654			
Ļ	Ве	9					
	ΑI	27					
>		45		119.399			
	V	51					
	Cr	52					
	Mn	55					
	Со	59					
	Ni	60					
L	Cu	65					
Γ	Zn	66					
>	Ge	72	•	108.069			
	As	75					
L	Se	82				× .	
	Y	89			,		
Ī	Мо	98					
	Ag	107					
	Ag	109					
	Cd	111					
	Cd	114			,		
>	In	115		96.692			
Ĺ	Sb	121					
	Ва	135				•	
>	Tb	159		79.720		•	•
	Но	165					
	TI	205					
!	Pb	208					
ŀ	Bi	209					
ļ	Th	232					
Ĺ	U	238					
	Na	23				•	
	Mg	24					
	K	39					
	Ca	44					
	Fe	54					
_>	Sc-1	45		•			
	Kr	83					

Sample ID: 1312035-MS4 @5X

Sample Date/Time: Tuesday, December 10, 2013 12:48:35

Sample Type: Spike - 2 of 7 Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\1312035-MS4 @5X.46507

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL):

Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	9112.756	3.816	9112.756			ug/L
Ĺ	Be ·	9	2146.480	5.244	0.234	32.11572	1.47	ug/L
Γ	Al	27	801392.147	4.328	5.567	393.76364	9.38	ug/L
>	Sc	45	143883.680	5.296	143883.680			ug/L
	٧	51	210103.021	3.987	1.486	53.17056	7.45	ug/L
	Cr	52	251717.669	7.212	1.705	69.95397	12.71	ug/L
	Mn	55	217177.675	3.742	1.496	39.59050	4.11	ug/L
	Co	59	171429.548	8.275	1.195	33.73813	11.68	ug/L
	Ni	60	93651.850	5.707	0.653	85.81779	11.03	ug/L
L	Cu	65	67581.644	8.069	0.470	52.94649	13.55	ug/L
Γ	Zn	66	23868.306	3.621	0.254	42.68363	3.56	ug/L
>	Ge	72	91614.916	0.345	91614.916			ug/L
	As	75	119832.459	3.164	1.311	148.45743	2.91	ug/L
L	Se	82	29146.542	4.372	0.318	373.89323	4.14	ug/L
	Υ	89	342.787	1.841	313.898			ug/L
Γ	Mo	98	147853.604	1.767	0.543	76.46741	3.21	ug/L
	Ag	107	42521.497	3.525	0.156	14.45947	2.01	ug/L
	Ag	109	40391.238	1.915	0.149	14.24354	3.43	ug/L
	Cd	111	25980.473	2.816	0.096	37.85933	3.98	ug/L
	Cd	114	57686.318	2.184	0.212	37.43057	1.05	ug/L
>	In	115	271830.402	1.648	271830.402			ug/L
L	Sb	121	335908.670	1.620	1.236	156.02556	3.17	ug/L
Γ	Ва	135	23161.174	1.289	0.126	55.29187	1.31	ug/L
>	Tb	159	183526.842	0.941	183526.842			ug/L
	Но	165	10.556	24.119	0.000			ug/L
	TI	205	646814.299	1.915	3.524	424.40644	1.13	ug/L
	Pb	208	430887.860	2.009	2.347	208.76733	2.41	ug/L
	Bi	209	22.778	21.123	0.000			ug/L
	Th	232	42267.448	0.816	0.230	21.83254	0.19	ug/L
Ĺ	U	238	42283.116	1.205	0.230	21.31452	0.27	ug/L
	Na	23	1756880.662	5.172	12.070	0.89608	9.47	mg/L
-	Mg	24	1536500.818	2.753	10.664	1.25754	3.82	mg/L
ļ	K	39	7339417.980	8.186	45.274	1.96455	15.09	mg/L
	Ca	44	700294.510	3.323	4.710	6.49334	7.12	mg/L
	Fe	54	205490.056	1.896	1.216	0.65475	8.28	mg/L
<u>_</u> >	Sc-1	45	143883.680	5.296	143883.680			mg/L
	Kr	83	116.112	14.378	33.334			mg/L

Sample ID: 1312035-MS4 @5X

Report Date/Time: Tuesday, December 10, 2013 12:50:12

Page 1

				Q C Carcaratea	raidoo		
_	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Li	6		119.074	. (
Ĺ	Ве	9			80.458		
Γ	Al	27			90.186		
>	Sc	45		118.418			
	V	51			89.546		
	Cr	52			87.227		
	Mn	55			93.121		
	Co	59			67.424		
	Ni	60			85.938		
L	Cu	65			88.243		
Γ	Zn	66					
>	Ge	72		113.310			
	As	75			92.855		
L	Se	82			93.490		
	Υ .	89					
Γ	Мо	98			95.187		
	Ag	107			96.389	•	
	Ag	109			94.953		
	Cd	111	•		94.647		
	Cd	114					
>	ln	115		97.446			
	Sb	121			97.498		
Γ	Ва	135			106.018		
>	Tb	159		81.419			
	Но	165					
1	TI	205			105.960		
	Pb	208			104.356		
	Bi	209					
	Th	232					
L	U	238					
Γ	Na	23			85.641		
	Mg	24			88.781		
	K	39			93.830		
	Ca	44			-178.751		
	Fe	54			101.489		
L>	Sc-1	45					
	Kr	83					

Sample ID: C131107-08 @5X

Sample Date/Time: Tuesday, December 10, 2013 12:51:39

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-08 @5X.46508

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

				Ooncentiation ix	Suito			
	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8789.526	6.316	8789.526			ug/L
Ĺ	Ве	9	3.333	50.000	-0.001	-0.08647	31.67	ug/L
Γ	Αl	27	60354.736	3.797	0.403	28.47892	3.48	ug/L
>	Sc	45	142808.500	4.421	142808.500			ug/L
ĺ	V	51	-7139.255	17.520	-0.028	-0.98723	39.34	ug/L
	Cr	52	8677.706	6.926	0.009	0.35282	54.24	ug/L
ĺ	Mn	55	63485.285	4.759	0.430	11.36883	3.12	ug/L
ĺ	Co	59	209.448	3.588	0.001	0.03151	6.79	ug/L
ĺ	Ni	60	-27.252	161.302	-0.001	-0.10481	37.99	ug/L
Ĺ	Cu	65	244.449	8.899	0.000	0.00551	451.98	ug/L
Γ	Zn	66	867.838	6.632	0.003	0.50911	14.22	ug/L
>	Ge	72	90616.833	2.179	90616.833			ug/L
1.	As	75	-384.044	54.266	-0.001	-0.10453	237.78	ug/L
Ĺ	Se	82	21.667	105.394	-0.000	-0.13769	216.97	ug/L
	Υ	89	336.120	4.039	307.231			ug/L
Γ	Мо	98	1213.218	18.624	0.004	0.51722	24.62	ug/L
ĺ	Ag	107	22.222	35.444	-0.000	-0.00033	825.28	ug/L
	Ag	109	25.556	24.691	0.000	0.00226	88.94	ug/L
1	Cd	111	20.911	41.935	0.000	0.01715	69.64	ug/L
	Ċd	114	31.002	61.070	-0.000	-0.01035	114.38	ug/L
>	In	115	278974.622	2.122	278974.622			ug/L
L	Sb	121	178.336	8.307	0.000	0.05015	16.82	ug/L
Γ	Ва	135	5622.528	1.002	0.030	13.17166	1.19	ug/L
>	Tb	159	186612.815	0.627	186612.815			ug/L
	Но	165	17.778	67.821	0.000			ug/L
	TI	205	1919.193	21.869	0.010	1.18059	23.11	ug/L
	Pb	208	326.114	6.431	0.001	0.09013	11.79	ug/L
	Bi	209	6.111	15.746	-0.000			ug/L
	Th	232	46.667	18.558	0.000	0.01368	33.20	ug/L
L	U	238	141.113	16.717	0.001	0.06701	17.50	ug/L
Γ	Na	23	914419.658	4.254	6.241	0.46330	7.91	mg/L
	Mg	24	1262645.916	5.004	8.817	1.03976	3.88	mg/L
	K	39	1196909.970	4.169	2.431	0.10548	21.86	mg/L
	Ca	44	822335.148	3.119	5.604	7.72559	7.86	mg/L
	Fe	54	45123.730	3.736	0.100	0.05392	9.36	mg/L
[>	Sc-1	45	142808.500	4.421	142808.500			mg/L
	Kr	83	102.779	29.960	20.000			mg/L

Sample ID: C131107-08 @5X

Report Date/Time: Tuesday, December 10, 2013 12:53:15

Page 1

				QC Calculated	i values		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 114.850	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
1 -	Be	9		111.000	•		
Г	Al	27					
. >		45		117.534			
. -	V	51		1111001			
	Cr	52					
i	Mn	55					
i	Со	59					
i	Ni	60					
i	Cu	65					
Ē	Zn	66					
 -		72		112.076			
ĺ	As	75					
L	Se	82					
	Υ	89					
Γ	Мо	98			•		
	Ag	107		,			
	Ag	109					
	Cd	111					
-	Cd	114					
>		115		100.008			
Ļ	Sb ·	121					•
-	Ba	135		00.700			
>		159		82.788			
	Ho	165					
	TI	205	•				
	Pb Bi	208 209					
1	Th	232					*
	U	232					
L	Na	230					
1	Mg	24					
	K	39					
	Ca	44					
	Fe	54					
>	• •	45					

83

Sample ID: Blank

Sample Date/Time: Tuesday, December 10, 2013 12:54:43

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\Blank.46509

Sample Prep Volume (mL): Initial Sample Quantity (mg):

Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

				-				0 1 1129
	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8266.577	2.629	8266.577		4 74	ug/L
L	Be	9	3.333	0.000	-0.001	-0.08396	1.71	ug/L
Γ	Al	27	1725.794	5.168	-0.008	-0.56023	3.10	ug/L
>	Sc	45	140312.632	5.327	140312.632			ug/L
	V	51	-3189.258	46.940	-0.000	-0.01190	3463.03	ug/L
	Cr	52	7145.773	9.320	-0.001	-0.04293	722.35	ug/L
	Mn	55	1528.764	36.517	-0.004	-0.11336	84.31	ug/L
	Co	59	32.778	25.593	-0.000	-0.00339	41.03	ug/L
	Ni	60	24.267	37.204	-0.000	-0.05661	17.55	ug/L
Ĺ	Cu	65	47.222	16.302	-0.001	-0.14981	5.04	ug/L
Γ	Zn	66	181.669	3.308	-0.005	-0.77137	3.11	ug/L
>	Ge	72	93256.863	3.963	93256.863			ug/L
j	As	75	-164.691	52.577	0.002	0.17496	56.91	ug/L
j	Se	82	8.778	36.490	-0.000	-0.30703	14.47	ug/L
	Υ	89	23.333	14.286	-5.556			ug/L
Γ	Мо	98	268.103	8.551	0.000	0.03703	32.58	ug/L
į	Ag	107	. 10.556	9.116	-0.000	-0.00428	6.04	ug/L
i	Ag	109	10.556	9.116	-0.000	-0.00291	12.56	ug/L
j	Cd	111	7.334	23.823	-0.000	-0.00207	124.64	ug/L
i	Cd	114	27.301	21.220	-0.000	-0.01283	26.40	ug/L
İ>	In	115	282542.323	1.579	282542.323			ug/L
i	Sb	121	62.778	6.681	-0.000	-0.00264	57.08	ug/L
Ī	Ва	135	2.778	34.641	-0.000	-0.03171	6.41	ug/L
i>	Tb	159	198679.341	2.664	198679.341			ug/L
i	Но	165	8.333	52.915	-0.000	•		ug/L
i	TI	205	696.706	13.907	0.003	0.36511	18.98	ug/L
j	Pb	208	127.778	8.685	-0.000	-0.00810	62.84	ug/L
i	Bi	209	12.778	27.152	0.000			ug/L
i	Th	232	5.556	17.321	-0.000	-0.00741	5.22	ug/L
i	U	238	2.222	114.564	-0.000	-0.00195	58.98	ug/L
Ī	Na	23	3907.359	18.191	-0.147	-0.01091	4.59	mg/L
i	Mg	24	2250.961	4.453	-0.012	-0.00137	1.75	mg/L
i	K	39	735797.033	3.327	-0.702	-0.03046	66.46	mg/L
-	Ca	44	18421.603	5.274	-0.035	-0.04859	40.52	mg/L
i	Fe	54	32086.304	8.176	0.014	0.00738	225.52	mg/L
>	Sc-1	45	140312.632	5.327	140312.632			mg/L
	Kr	83	105.001	9.913	22.223			mg/L

Sample ID: Blank

Report Date/Time: Tuesday, December 10, 2013 12:56:20

Page 1

[> [>	Analyte Li Be Al Sc V	Mass . 6 . 9 . 27 . 45	QC Std % Recovery	Int Std % Recovery 108.017	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	AI Sc	27					
>	Sc						
1		45		115.479			
i .		51					
- 1 '	Cr	52					
	Mn .	55					
	Co	59					
	Ni	60					
	Cu	65					
	Zn	66					
	Ge	72		115.341			
	As	75					
	Se	82					
	Υ	89					
	Мо	98					
	Agi	107					
	Ag	109					
	Cd Cd	111					·
	ln	114 115		101.287			
	Sb	121	•	101.207			
	Ва	135					
	Tb	159		88.141			
	Ho	165		00.111			
	TI	205					
	⊃b	208					
	3i	209					
1	Th	232					
	J	238					
	\la	23					
	Иg	24					
	<	39					
	Са	44				•	
	-e	54		· ·			
	Sc-1	45	•				
K	<r></r>	83					

Sample ID: SEQ-CCV

Sample Date/Time: Tuesday, December 10, 2013 12:57:46

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-CCV.46510

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8212.621	4.278	8212.621			ug/L
Ĺ	Be	9	3100.769	2.714	0.377	51.64353	5.00	ug/L
	Αl	27	450250.528	5.677	3.420	241.87057	3.06	ug/L
>	Sc	45	130844.816	3.430	130844.816			ug/L
- 1	V .	51	178200.974	7.115	1.385	49.54798	6.81	ug/L
	Cr	52	163489.129	5.397	1.199	49.19576	7.78	ug/L
	Mn	55	251423.062	3.336	1.907	50.46939	2.57	ug/L
	Со	59	215872.232	4.179	1.650	46.56752	2.77	ug/L
	Ni	60	47418.202	8.400	0.362	47.54972	7.09	ug/L
L	Cu	65	56586.223	2.506	0.431	48.54669	4.36	ug/L
Γ	Zn	66	29392.921	4.149	0.306	51.37977	3.43	ug/L
>	Ge	72	94153.400	3.674	94153.400			ug/L
-	As	75	40393.968	4.476	0.433	48.97721	4.96	ug/Ĺ
L	Se	82	3969.420	3.615	0.042	49.27515	7.38	ug/L
	Υ	89	39.445	6.454	10.556			ug/L
Γ	Mo	98	101481.472	2.143	0.356	50.02934	1.98	ug/L
	Ag	107	154624.308	2.986	0.543	50.19450	2.39	ug/L
	Ag	109	145350.976	1.518	0.510	48.90529	1.19	ug/L
	Cd	111	35742.057	0.667	0.125	49.68402	0.66	ug/L
	Cd	114	79291.312	1.895	0.278	49.10453	2.09	ug/L
>	In	115	284886.750	0.749	284886.750			ug/L
L	Sb	121	110456.526	1.460	0.387	48.91526	0.80	ug/L
Γ	Ва	135	24538.078	1.026	0.121	53.26442	2.03	ug/L
>	Tb	159	201855.896	1.112	201855.896			ug/L
	Но	165	8.333	20.000	-0.000			ug/L
	TI	205	92157.112	3.106	0.456	54.92174	2.00	ug/L
	Pb ·	208	123034.042	0.729	0.609	54.14694	0.77	ug/L
1 .	Bi	209	16.111	33.254	0.000			ug/L
	Th	232	117125.383	2.136	0.580	55.01715	1.22	ug/L
L	U	238	117089.178	2.202	0.580	53.66894	1.82	ug/L
Γ	Na	23	8626504.454	5.768	65.883	4.89095	9.03	mg/L
	Mg	24	5546749.662	4.287	42.426	5.00322	7.13	mg/L
	K	39	16289774.051	8.808	118.648	5.14847	9.97	mg/L
	Ca	44	502070.720	2.173	3.674	5.06536	5.45	mg/L
	Fe	54	1310543.403	2.267	9.807	5.28224	3.89	mg/L
_>	Sc-1	45	130844.816	3.430	130844.816			mg/L
	Kr	83	93.334	13.947	10.556			mg/L

Sample ID: SEQ-CCV

Report Date/Time: Tuesday, December 10, 2013 12:59:21

				&C Calculated	, varaec		
г	Analyte	Mass	QC Std % Recovery	Int Std % Recovery 107.312	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Li	6	103.287	107.312			
L	Be	9 27	96.748				
1.	AI Sc	45	30.740	107.687			
>	V	51	99.096	107.007			
1	v Cr	52	98.392				
1	Mn	55	100.939				
l	Co	59	93.135				
	Ni	60	95.099				
1	Cu	65	97.093				
L F	Zn	66	102.760				
>	Ge	72		116.450			
	As	75	97.954				
Ì	Se	82	98.550			•	
_	Υ .	89					
Γ	Мо	98	100.059				
İ	Ag	107	100.389				•
İ	Ag	109	97.811				
İ	Cd	111	99.368				
ĺ	Cd	114					
>	ln	115		102.127			
L	Sb	121	97.831				
Γ.	Ва	135	106.529				
>	Tb	159		89.550			
	Но	165					
	TI ·	205	109.843				
	Pb	208	108.294				
	Bi	209					
	Th	232	110.034				
L	U	238	107.338				
Γ	Na	23	97.819	•	•		
	Mg	24	100.064				
	K	39	102.969				
ļ	Са	44	101.307				
	Fe	54	105.645				
_>	Sc-1	45			'		
	Kr	83					

Sample ID: SEQ-CCB

Sample Date/Time: Tuesday, December 10, 2013 13:01:02

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-CCB.46511

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

					304.10			
	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8309.411	2.442	8309.411			ug/L
L	Be	9	4.444	57.282	-0.000	-0.06661	60.81	ug/L
. [Αl	27	2474.938	10.180	-0.001	-0.04032	606.01	ug/L
>	Sc	45	126988.244	7.318	126988.244	•		ug/L
	V	51	-1318.277	76.498	0.013	0.44894	59.00	ug/L
	Cr	52	6773.672	3.870	0.001	0.04949	172.85	ug/L
	Mn	55	1905.757	28.295	0.000	0.00340	4043.29	ug/L
	Co	59	59.445	20.283	0.000	0.00325	67.47	ug/L
	Ni	60	51.756	20.088	-0.000	-0.02641	28.38	ug/L
L	Cu	65	165.558	9.568	-0.000	-0.04060	42.28	ug/L
Γ	Zn	66	377.234	12.199	-0.002	-0.40234	26.67	ug/L
>	Ge	72	91291.689	5.786	91291.689			ug/L
1	As	75	-279.673	32.104	0.000	0.02428	479.19	ug/L
L	Se	82	33.667	60.688	0.000	0.00912	2615.39	ug/L
	Υ	89	28.889	13.324	0.000			ug/L
Γ	Mo	98	423.728	18.752	0.001	0.10977	37.43	ug/L
j	Ag	107	42.778	23.485	0.000	0.00597	58.11	ug/L
İ	Ag	109	36.111	11.615	0.000	0.00545	22.24	ug/L
1	Cd	111	6.667	106.765	-0.000	-0.00317	312.02	ug/L
İ	Cd	114	14.309	131.512	-0.000	-0.02100	55.85	ug/L
>	In	115	289520.934	1.815	289520.934			ug/L
L	Sb	121	306.674	12.850	0.001	0.10308	16.65	ug/L
Ī	Ва	135	15.556	32.733	-0.000	-0.00427	262.41	ug/L
>	Tb	159	203879.025	2.119	203879.025			ug/L
İ	Но	165	5.556	34.641	-0.000			ug/L
Ì	TI	205	336.120	17.618	0.001	0.13994	23.66	ug/L
1	Pb	208	151.112	5.094	0.000	0.00066	714.95	ug/L
	Bi	209	7.778	44.607	-0.000			ug/L
Ì	Th	232	43.889	28.754	0.000	0.01037	56.41	ug/L
Ĺ	U	238	27.222	23.179	0.000	0.00942	32.08	ug/L
Γ	Na	23	17438.793	5.744	-0.037	-0.00277	27.38	mg/L
	Mg	24	4045.199	4.650	0.004	0.00050	35.14	mg/L
	K	39	772528.540	1.228	0.147	0.00637	363.36	mg/L
	Ca	44	18025.965	2.137	-0.025	-0.03397	38.91	mg/L
	Fe	54	29952.298	9.393	0.020	0.01084	93.87	mg/L
<u></u> >	Sc-1	45	126988.244	7.318	126988.244			mg/L
	Kr	83	96.112	19.023	13.334			mg/L

Sample ID: SEQ-CCB

Report Date/Time: Tuesday, December 10, 2013 13:02:38

Page 1

					QO Calculatet			
	_	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
- !	>	Li	6		108.577			
[-	Ве	9		·			
ļ		Al	27					
- [>	Sc	45		104.513			
.		V	51					
		Cr	52				•	
-		Mn	55				•	
		Со	59					
- [Ni	60	•				
Ļ	:	Cu	65	•				
		Zn	66					
	>	Ge	72		112.911			
-		As	75					
L		Se	82	•				•
-		Y	89					\$
-		Мо	98					
-		Ag	107					
-		Ag	109					
		Cd	111					
		Cd	114		400 700			
1	>	ln O	115		103.788			
Ĺ		Sb	121					
		Ва	135		00.440			
		Tb	159		90.448			
		Но	165					
		TI	205					
		Pb	208					
-		Bi	209					
- 1		Th . U	232					
L			238 23					
1		Na Ma	23 24					
1		Mg ⊬	39					
J		K Ca	39 44					
1		Fe	54					
1.		Sc-1	54 45					
L:		Kr	45 83					
		IN	03	•				

Sample ID: C131107-10 @10X

Sample Date/Time: Tuesday, December 10, 2013 13:04:21

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-10 @10X.46512

Sample Prep Volume (mL): Initial Sample Quantity (mg):

Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

			•				0	Camanda I lmit
_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8395.087	4.712	8395.087	0.00040	440.20	ug/L
Ē	Be	9	6.667	25.000	-0.000	-0.02942	110.39	ug/L
	Al	27	42425.366	4.517	0.280	19.76941	2.07	ug/L
>	Sc	45	141501.241	2.596	141501.241	0.05040	720.20	ug/L
	V	51	-2989.497	57.044	0.002	0.05816	736.30	ug/L
	Cr	52	7760.928	2.008	0.003	0.10822	65.42	ug/L
	Mn	55	1030298.711	3.538	7.265	192.28114	1.34	ug/L
	Co	59	1416.828	6.275	0.010	0.27291	7.59	ug/L
	Ni	60	7.572	950.504	-0.001	-0.07152	93.20	ug/L
L	Cu	65	6438.316	2.593	0.044	4.93739	3.65	ug/L
Γ	Zn	66	281799.762	5.091	3.109	522.48837	3.22	ug/L
>	Ge	72	90428.732	2.875	90428.732			ug/L
	As	75	-180.927	110.000	0.001	0.14240	176.32	ug/L
L	Se	82	22.334	59.121	-0.000	-0.13011	128.91	ug/L
	Υ	89	707.818	8.193	678.929			ug/L
Γ	Мо	98	2823.622	2.386	0.010	1.35533	4.36	ug/L
	Ag .	107	11.111	22.913	-0.000	-0.00399	20.95	ug/L
1	Ag	109	11.111	48.218	-0.000	-0.00262	69.58	ug/L
1	Cd	111	1877.713	1.656	0.007	2.70516	3.34	ug/L
	Cd	114	4050.952	1.673	0.015	2.58287	3.24	ug/L
>	In	115	273799.571	1.820	273799.571			ug/L
Ĺ	Sb	121	188.892	3.566	0.000	0.05645	7.08	ug/L
Ē	Ва	135	882.840	5.454	0.005	2.04912	4.28	ug/L
>	Tb	159	185403.484	1.485	185403.484			ug/L
i	Но	165	19.444	42.282	0.000			ug/L
İ	TI	205	163.336	15.238	0.000	0.04777	36.21	ug/L
i	Pb	208	638.347	2.321	0.003	0.24092	3.09	ug/L
İ	Bi	209	10.000	0.000	-0.000			ug/L
i	Th	232	23.333	37.797	0.000	0.00193	243.82	ug/L
i	U	238	850.058	0.196	0.005	0.42134	1.69	ug/L
Ē	Na	23	1915586.877	5.584	13.358	0.99168	4.01	mg/L
i	Mg	24	2055468.554	4.623	14.494	1.70923	2.34	mg/L
i	ĸ	39	1571969.396	2.242	5.154	0.22363	8.78	mg/L
i	Ca	44	2413014.674	9.051	16.877	23.26596	7.97	mg/L
j	Fe	54	104426.998	7.714	0.522	0.28114	10.38	mg/L
>	Sc-1	45	141501.241	2.596	141501.241			mg/L
	Kr	83	108.890	13.018	26.112			mg/L

Sample ID: C131107-10 @10X

Report Date/Time: Tuesday, December 10, 2013 13:05:57

Page 1

				QC Calculated	i vaiues		
Γ:	Analyt > Li	e Mass 6	QC Std % Recovery	Int Std % Recovery 109.696	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
i.	Ве	9		100.000			
· Γ	Αľ	27					
į:	> Sc	45		116.458			
İ	V	51					
İ	Cr	52					
	Mn	55					
	Co	59					
	Ni	60					
L	Cu	65					
Γ	Zn	. 66			•		
>		72		111.843			
-	As	75					**************************************
L	Se	82					
_	Υ	89					
	Мо	98					
	Ag	107				,	
	Ag	109					
	Cd	111					
1.	Cd In	114 115		98.152			
>	Sb	121		90.102			4
L	Ba	135					
>		159		82.252			
-	Ho	165		02.202			
i	TI	205					
i	Pb	208					
i	Bi	209					
į	Th	232					
Ĺ	U	238					
Γ	Na	23					
	Mg	24					
	K	39					
	Ca	44					
	Fe	54					
_>		45			•		
	Kr	83					

Sample ID: C131107-13 @10X

Sample Date/Time: Tuesday, December 10, 2013 13:07:24

Sample Type: Sample Sample Description: Number of Replicates: 3 . Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-13 @10X.46513

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8752.247	5.371	8752.247			ug/L
L	Be	9	3.889	89.214	-0.001	-0.07750	69.97	ug/L
Γ	Αl	27	25354.174	4.644	0.169	11.92239	6.96	ug/L
>	Sc	45	134390.884	1.699	134390.884			ug/L
	V	51	-3950.386	14.854	-0.007	-0.24231	70.64	ug/L
	Cr	52	8197.077	10.328	0.009	0.36267	81.90	ug/L
	Mn	55	976315.023	6.368	7.255	192,00311	7.69	ug/L
	Co	59	1452.392	9.944	0.010	0.29551	11.97	ug/L
-	Ni	60	57.617	156.101	-0.000	-0.02245	393.66	ug/L
L	Cu	65	4019.070	3.138	0.028	3.17961	3.15	ug/L
Γ	Zn	66	271199.108	4.473	3.151	529.59735	7.38	ug/L
>	Ge	72	86033.181	4.092	86033.181			ug/L
	As	75	-295.613	43.085	-0.000	-0.02158	848.65	ug/L
L	Se	82	39.334	20.567	0.000	0.11755	79.64	ug/L
	Υ '	89	440.016	7.077	411.127			ug/L
Γ	Мо	98	2761.607	2.839	0.010	1.34589	3.80	ug/L
1	Ag	107	11.111	45.826	-0.000	-0.00391	45.96	ug/L
-	Ag	109	9.444	56.727	-0.000	-0.00314	60.37	ug/L
	Cd	111	1777.408	2.927	0.007	2.59991	1.36	ug/L
	Cd	114	3924.453	2.500	0.014	2.54102	2.08	ug/L
>	In	115	269484.262	1.947	269484,262			ug/L
L	Sb	121	108.890	8.704	0.000	0.02034	21.76	ug/L
Γ	Ва	135	935.626	4.526	0.005	2.17364	4.44	ug/L
>	Tb	159	185475.763	0.259	185475.763			ug/L
	Но	165	12.222	34.317	0.000	·		ug/L
	TI	205	145.002	12.800	0.000	0.03566	33.18	ug/L
	Pb	208	418.894	2.527	0.002	0.13554	3.51	ug/L
	Bi	209	14.444	35.251	0.000			ug/L
	Th	232	15.000	33.333	-0.000	-0.00239	106.35	ug/L
L	U ·	238	841.723	3.975	0.005	0.41697	4.18	ug/L
Γ	Na	23	1925291.065	4.453	14.147	1.05027	3.15	mg/L
	Mg	24	2110278.928	1.532	15.676	1.84862	1.18	mg/L
	K	39	1625351.962	6.204	6.141	0.26647	14.99	mg/L
	Ca	44	2455657.263	0.531	18.108	24.96284	1.46	mg/L
	Fe	54	74392,968	3.535	0.338	0.18198	8.60	mg/L
L>	Sc-1	45	134390.884	1.699	134390.884			mg/L
	Kr	83	82.778	7.071	-0.000			mg/L

Sample ID: C131107-13 @10X

Report Date/Time: Tuesday, December 10, 2013 13:09:00

				QO Odiodialec	i vaiues		
г	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>		6		114.363			
Ļ	Ве	9					
ļ	Al	27					•
>		45		110.606	•		
	V	51					
- !	Cr	52					
	Mn	55					
	Co	59		•			
	Ni	60			•		
. L	Cu	65					
	Zn	66					
>	Ge	72		106.407			
	As	75					
L	Se	82			•		
	Υ	89					
Γ	Мо	98					
·	Ag	107					
	Ag	109					
	Cd	111					
	Cd	114					
>	In	115		96.605			
L	Sb	121					
Γ	Ва	135		•			
>	Tb	159		82.284			
	Но	165					
	TI	205					
	Pb	208					
	Bi .	209					*
	Th	232					
L	U	238					
Γ	Na	23					
-	Mg	24					
	K	39					
	Ca	44					
	Fe	54					
_>	Sc-1	45					
	Kr	83					

Sample ID: C131107-15 @10X

Sample Date/Time: Tuesday, December 10, 2013 13:10:27

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-15 @10X.46514

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	9184.544	7.098	9184.544			ug/L
Ĺ	Ве	9	4.444	86.603	-0.001	-0.07025	85.12	ug/L
	Al	27	15497.567	5.842	0.089	6.29254	4.96	ug/L
>	Sc	45	141918.437	3.630	141918.437			ug/L
	V	51	-3771.822	13.980	-0.004	-0.14372	117.79	ug/L
	Cr	52	8326.696	10.683	0.006	0.26549	96.47	ug/L
	Mn	55	854941.177	4.609	6.011	159.07996	3.93	ug/L
	Со	59	1110.099	6.102	0.007	0.21079	3.59	ug/L
	Ni	60	91.911	148.845	0.000	0.00289	4272.13	ug/L
L	Cu	65	2208.724	2.104	0.014	1.56562	3.70	ug/L
Γ	Zn	66	225922.727	1.012	2.548	428.21634	3.11	ug/L
>	Ge	72	88511.876	3.973	88511.876			ug/L
-	As	75	-173.147	80.800	0.001	0.15398	109.78	ug/L
L	Se	82	30.556	90.094	-0.000	-0.00281	13406.17	ug/L
	Υ	89	251.672	4.343	222.783			ug/L
Γ	Mo.	98	2501.255	4.570	0.008	1.16662	5.86	ug/L
	Ag	107	13.889	18.330	-0.000	-0.00313	26.65	ug/L
	Ag	109	12.222	20.830	-0.000	-0.00229	37.01	ug/L
	Cd	111	1487.439	3.360	0.005	2.10198	4.29	ug/L
	Cd	114	3327.297	2.180	0.012	2.07727	1.33	ug/L
>	In	115	278727.058	0.893	278727.058			ug/L
L	Sb	121	120.001	14.633	0.000	0.02372	35.31	ug/L
Γ	Ва	135	882.840	3.400	0.005	1.98897	4.11	ug/L
>	Tb	159	191000.833	0.867	191000.833			ug/L
	Но	165	11.667	62.270	0.000			ug/L
	TI	205	145.002	15.549	0.000	0.03304	45.49	ug/L
	Pb	208	336.670	1.980	0.001	0.09144	2.74	ug/L
	Bi	209	12.778	19.924	0.000			ug/L
1	Th	232	12.222	7.873	-0.000	-0.00398	10.94	ug/L
L	U	238	777.826	4.414	0.004	0.37392	5.00	ug/L
Γ	Na	23	2009145.033	4.188	13.988	1.03842	4.09	mg/L
	Mg	24	2228233.399	4.286	15.675	1.84856	3.06	mg/L
	K	39	1712661.861	5.711	6.118	0.26546	13.91	mg/L
	Ca	44	2419050.873	2.578	16.900	23.29717	5.66	mg/L
	Fe	54	54997.071	7.046	0.171	0.09221	8.10	mg/L
L>	Sc-1	45	141918.437	3.630	141918.437			mg/L
	Kr	83	97.223	17.172	14.445			mg/L

Sample ID: C131107-15 @10X

Report Date/Time: Tuesday, December 10, 2013 13:12:03

				Q O Gargarato	i Varaco		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Be	9	•	120.012			
L F	Al	9 27					
>	Sc	45		116.801			•
/	V	51		110.001	•		
	V Cr	52					
	Mn	55					
i	Co	59					
	Ni	60					
İ	Cu	65					
ř	Zn	66					
>	Ge	72		109.473		·	
i	As	75					
Ĺ	Se	82					
	Υ	89					
Γ	Мо	98					
	Ag	107					
	Ag	109					
	Cd	111					
	Cd	114					
>	In	115		99.919			
L	Sb	121		•			
ſ	Ва	135					
>	Tb	159		84.735			
	Но	165					
-	TI	205					
	Pb	208					
1	Bi	209					
	Th	232	•				
Ļ	U	238					
	Na	23					
l	Mg	24					
	K Ca	39					
1	Fe -	44 54					
<u> </u>	Sc-1	45					
L>	Kr	83					
	i XI	00					

Sample ID: C131107-17 @10X

Sample Date/Time: Tuesday, December 10, 2013 13:13:30

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-17 @10X.46515

Sample Prep Volume (mL): Initial Sample Quantity (mg):
Aliquot Volume (mL):
Diluted To Volume (mL):

Concentration Results

r	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8667.674	1.779	8667.674			ug/L
Ļ	Be	9	5.000	66.667	-0.000	-0.06037	87.46	ug/L
	Al	27	8877.433	7.109	0.044	3.09050	14.95	ug/L
>	Sc	45	139172.218	2.966	139172.218	0.44504	500.04	ug/L
-	V	51	-3633.650	71.310	-0.003	-0.11501	560.91	ug/L
ļ	Cr	52	8120.314	10.948	0.006	0.25198	104.42	ug/L
ļ	Mn	55	864360.558	3.266	6.202	164.13575	5.58	ug/L "
	Со	59	1015.083	11.225	0.007	0.19651	14.89	ug/L
ļ	Ni ,	60	-72.127	88.172	-0.001	-0.14887	41.77	ug/L
Ē	Cu	65	1031.197	10.947	0.006	0.64518	10.81	ug/L
ļ	Zn	66	205519.645	6.111	2.320	389.87384	4.99	ug/L
>	Ge	72	88311.872	1.631	88311.872			ug/L
	As	75	-146.210	82.487	0.002	0.18398	84.28	ug/L
L	Se	82	22.667	26.836	-0.000	-0.11597	74.12	ug/L
	Υ	89	168.336	8.104	139.447			ug/L
Γ	Мо	98	2181.812	1.805	0.007	1.01018	4.41	ug/L
	Ag	107	15.556	26.964	-0.000	-0.00257	49.38	ug/L
	Ag	109	10.556	24.119	-0.000	-0.00284	32.84	ug/L
	Cd	111	1205.821	1.973	0.004	1.70841	0.86	ug/L
	Cd	114	2707.824	2.723	0.010	1.69325	4.65	ug/L
>	In	115	277586.567	2.345	277586.567			ug/L
L	Sb	121	93.334	12.500	0.000	0.01181	48.47	ug/L
Γ	Ва	135	881.173	3.495	0.005	2.03856	1.99	ug/L
>	Tb	159	186030.432	2.100	186030.432			ug/L
	Ho	165	4.444	57.282	-0.000			ug/L
	TI	205	102.223	33.507	0.000	0.00747	278.56	ug/L
	Pb	208	275.002	3.374	0.001	0.06621	9.17	ug/L
1.	Bi	209	3.889	49.487	-0.000			ug/L
	Th	232	5.000	57.735	-0.000	-0.00750	19.65	ug/L
L	U	238	778.382	1.903	0.004	0.38440	4.00	ug/L
Γ	Na	23	2494719.937	6.274	17.740	1.31698	3.75	mg/L
	Mg	24	2682984.576	1.663	19.259	2.27114	2.58	mg/L
	K	39	1918760.118	5.311	7.833	0.33988	10.64	mg/L
	Ca	44	2631217.399	3.285	18.738	25.83125	0.79	mg/L
	Fe	54	47260.803	10.784	0.123	0.06631	22.92	mg/L
Ĺ>	Sc-1	45	139172.218	2.966	139172.218			mg/L
_	Kr	83	99.445	16.450	16.667			mg/L

Sample ID: C131107-17 @10X

Report Date/Time: Tuesday, December 10, 2013 13:15:06

				go oaroaratot	, varaoo		
Г.	Analyte Li	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Be	6		113.258			
L	Al	9 27					
1.	Sc	45		114.541			
>	V	51		114.041			
1	V Cr	52					
1	Mn	55					
1.	Co	59					
	Ni	60				4	
	Cu	65					
F	Zn	66					
>	Ge	72		109.225			
	As	75		100.220			
i	Se	82					
_	Υ	89					
Γ	Мо	98					
i	Ag	107					
i	Ag	109					
i	Cq	111					
į	Cd	114					
>	In	115		99.510			•
Ĺ	Sb	121					
Γ	Ва	135					
>	Tb	159		82.530			
İ	Но	165					
	TI	205			•		•
	Pb	208					
	Bi	209			•		
	Th ·	232					
L	U	238				•	
Ţ	Na	23					
ļ	Mg	24					
ļ	K	39					
	Ca	44					
- [Fe	54					
_>	Sc-1	45					
	Kr	83					

Sample ID: C131107-20 @5X

Sample Date/Time: Tuesday, December 10, 2013 13:16:33

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-20 @5X.46516

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

					Jourto			
	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8793.978	6.529	8793.978		•	ug/L
L	Be	9	5.556	96.437	-0.000	-0.05520	138.38	ug/L
Γ	Al	27	32677.334	9.072	0.205	14.48212	9.61	ug/L
>	Sc	45	145225.674	0.561	145225.674			ug/L
	V	51	-9640.117	18.158	-0.044	-1.56497	28.29	ug/L
	Cr	52	9370.953	9.711	0.012	0.50455	50.97	ug/L
	Mn	55	183561.492	3.076	1.249	33.05199	2.83	ug/L
	Co	59	311.119	12.783	0.002	0.05052	14.83	ug/L
	Ni	60	-14.213	319.393	-0.001	-0.09241	44.53	ug/L
L.	Cu	65	367.789	5.915	0.001	0.09724	17.33	ug/L
Γ	Zn	66	19632.467	2.658	0.202	34.01393	1.96	ug/L
>	Ge	72	93965.125	1.809	93965.125			ug/L
-	As	75	-163.536	50.733	0.002	0.17526	56.37	ug/L
L	Se	82	23.889	73.840	-0.000	-0.12184	177.97	ug/L
	Υ	89	320.008	6.400	291.119			ug/L
Γ	Мо	98	580.590	2.610	0.001	0.19337	5.13	ug/L
	Ag	107	18.889	10.189	-0.000	-0.00154	43.40	ug/L
	Ag	109	10.000	16.667	-0.000	-0.00309	17.49	ug/L
	Cd	111	129.722	12.888	0.000	0.16981	13.04	ug/L
	Cd	114	258.757	14.085	0.001	0.13232	18.17	ug/L
>	In	115	281859.131	0.805	281859.131			ug/L
L	Sb	121	73.889	18.232	0.000	0.00245	256.24	ug/L
Γ	Ва	135	5709.831	3.350	0.030	13.11538	2.80	ug/L
>	Tb	159	190299.375	0.918	190299.375			ug/L
ŀ	Но	165	14.444	29.038	0.000			ug/L
	TI	205	83.889	16.897	-0.000	-0.00534	176.42	ug/L
	Pb	208	212.779	7.107	0.000	0.03409	18.25	ug/L
	Bi	209	11.667	14.286	0.000			ug/L
	Th	232	14.444	63.549	-0.000	-0.00283	164.78	ug/L
L	U	238	243,894	12.828	0.001	0.11563	13.14	ug/L
	Na	23	1619013.180	5.308	10.974	0.81465	5.44	mg/L
	Mg	24	1914843.764	4.779	13.156	1.55147	4.38	mg/L
	.K	39	1605766.138	8.190	5.093	0.22101	17.23	mg/L
	Ca	44	1269029.125	1.038	8.571	11.81573	0.85	mg/L
	Fe	54	43574.324	2.453	0.084	0.04525	7.54	mg/L
_>	Sc-1	45	145225.674	0.561	145225.674			mg/L
	Kr	83	100.001	18.028	17.222			mg/L

Sample ID: C131107-20 @5X

Report Date/Time: Tuesday, December 10, 2013 13:18:09

				QO Calculatet	i values		
[>		6	QC Std % Recovery	Int Std % Recovery 114.909	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
Ĺ	Be	9					
	AI Sc	27		440.500			
>	V	45 51		119.523			
 	v Cr	52					
	Mn	55					
ì	Co	59		•			
i	Ni	60					
i	Cu	65				•	
Ī	Zn	66					
>	Ge	72		116.217			
	As	75					
L	Se	82					
	Υ	89			•		
Ĺ	Мо	98					
	Ag	107					
	Ag .	109					
	Cd	. 111					
-	Cd	. 114		101010	•		
.>	In Ol-	115		101.042			
Ĺ	Sb Ba	121					
>	Тb	135 159		84.424			
>	Но	165		04.424			
	TI	205					
í	Pb	208					
İ	Bi	209					
i	Th	232					
Ĺ	U	238			÷		
Γ	Na	23					
	Mg	24					
	K	39					
	Ca	44					
ļ	Fe	54					
_>	Sc-1	45					
	Kr	83					

Sample ID: C131107-23 @10X

Sample Date/Time: Tuesday, December 10, 2013 13:19:36

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-23 @10X.46517

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	9377.603	6.040	9377.603			ug/L
L	Be	9	72.223	7.050	0.007	0.91837	10.64	ug/L
Γ	Al	27	5987850.788	3.936	37.629	2661.55317	5.56	ug/L
>	Sc	45	159274.774	5.264	159274.774			ug/L
	V	51	35144.175	5.932	0.243	8.70227	0.69	ug/L
	Cr.	52	23927.549	7.440	0.098	4.02888	12.07	ug/L
	Mn	55	1193338.010	4.132	7.481	198.00270	2.29	ug/L
	Co	59	12273.765	8.524	0.077	2.16307	3.64	ug/L
	Ni	60	4035.381	10.832	0.025	3.24495	6.22	ug/L
L	Cu	65	38628.029	4.189	0.241	27.13020	1.12	ug/L
Γ	Zn	66	78223.455	5.230	0.878	147.53997	3.74	ug/L
>	Ge	72	88434.431	3.117	88434.431			ug/L
	As	75	13450.076	4.320	0.156	17.61115	6.28	ug/L
L	Se	82	76.112	33.078	0.000	0.58759	51.70	ug/L
	Y.	89	79823.799	1.389	79794.910			ug/L
Γ	Мо	98	4027.295	1.880	0.015	2.08825	2.03	ug/L
	Ag	107	1752.468	4.700	0.007	0.61713	4.27	ug/L
-	Ag	109	1646.328	4.005	0.006	0.60213	4.96	ug/L
	Cd	111	899.606	6.928	0.003	1.36210	7.98	ug/L
	Cd	114	1835.567	3.299	0.007	1.21967	4.51	ug/L
>	In	115	259443.537	2.448	259443.537			ug/L
L	Sb	121	401.680	7.685	0.001	0.16506	11.70	ug/L
Γ	Ва	135	39752.143	1.296	0.230	100.72311	1.46	ug/L
>	Tb	159	172977.463	1.463	172977.463			ug/L
	Но	165	1376.263	3.886	0.008			ug/L
	TI	205	498.353	2.655	0.002	0.28861	4.23	ug/L
	Pb	208	90021.701	2.029	0.520	46.22359	1.93	ug/L
	Bi	209	457.795	2.005	0.003			ug/L
	Th	232	3921.786	1.890	0.023	2.14012	0.59	_
L	U	238	967.297	3.969	0.006	0.51440	3.19	ug/L
Γ	Na	. 23	9941216.823	2.956	62.424	4.63422	8.43	mg/L
	Mg	24	11725725.269	3.054	73.707	8.69213	5.31	mg/L
	K	39	10437514.069	7.799	59.679	2.58965	9.89	mg/L
	Ca	44	5815180.276	3.077	36.446	50.24167	8.18	mg/L
	Fe	54	2059219.582	2.298	12.735	6.85896	5.33	mg/L
_>	Sc-1	45	159274.774	5.264	159274.774			mg/L
	Kr	83	100.001	21.795	17.222			mg/L

Sample ID: C131107-23 @10X

Report Date/Time: Tuesday, December 10, 2013 13:21:12

				Q O Galloulatou	, varaos		
Г.	Analyte Li	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Be	6 9		122.535			
L L	Al	27					
>	Sc	45		131.086			
	V	51		131.000			
i	Cr	52					
i	Mn	55					
i	Со	59					
i	Ni	60		•			
Ĺ	Cu	65		·			
Ē	Zn	66					
>	Ge	72		109.377			
	As	75					
	Se	82					
	Υ	89					
Γ	Мо	98					
	Ag	107					
	Ag	109					
	Cd	111			•		
	Cd	114					
>	ln O	115		93.006			
Ĺ	Sb	121					
ļ	Ba	135					
>	Tb	159		76.739			
	Ho	165					
l I	TI Pb	205					
į į	Рb Bi	208 209					
1	Th	232					
	U	238					
r r	Na	23					
	Mg	24					
	K	39					
	Са	44					
	Fe	54					
_>	Sc-1	45					
-	Kr	83					

Sample ID: C131107-26 @10X

Sample Date/Time: Tuesday, December 10, 2013 13:22:39

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-26 @10X.46518

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

_	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8797.302	2.855	8797.302	1 00440	0.04	ug/L
Ļ	Ве	9	126.112	9.561	0.013	1.82410	9.31	ug/L
ļ	Al	27	17536206.321	2.088	107.378	7594.94570	2.98	ug/L
>	Sc	45	163393.734	3.969	163393.734	0.4.000	4 =0	ug/L
1	V	51	106744.994	1.922	0.677	24.20873	4.73	ug/L
	Cr	52	85104.254	3.330	0.469	19.25722	6.38	ug/L
-	Mn	55	5285021.159	4.244	32.337	855.84314	2.84	ug/L
ļ	Со	59	36588.479	1.972	0.224	6.31869	4.79	ug/L
	Ni	60	14883.309	6.439	0.091	11.92393	9.92	ug/L
Ī	Cu	65	83353.060	5.041	0.509	57.34175	7.43	ug/L
	Zn	66	355033.320	5.040	3.886	653.04760	1.68	ug/L
>	Ge	72	91187.675	3.750	91187.675			ug/L
	As	75	30866.091	2.049	0.342	38.73666	4.59	ug/L
L	Se	82	54.445	38.888	0.000	0.28511	95.37	ug/L
	Υ	89	191109.914	1.477	191081.025			ug/L
Γ	Мо	98	6496.725	2.161	0.024	3.43280	5.77	ug/L
	Ag	107	4088.003	1.389	0.016	1.45155	4.04	ug/L
.	Ag	109	3932.352	7.266	0.015	1.45095	11.22	ug/L
	Cd	111	2806.826	0.618	0.011	4.27815	3.91	ug/L
	Cd	114	5908.104	2.956	0.023	3.99193	1.01	ug/L
>	In	115	259391.028	3.939	259391.028			ug/L
L	Sb	121	376.122	4.881	0.001	0.15264	8.58	ug/L
Γ	Ва	135	46391.021	1.940	0.264	115.64017	1.53	ug/L
>	Tb	159	175820.658	1.287	175820.658			ug/L
	Но	165	3215.272	2.817	0.018			ug/L
	TI	205	483.908	10.080	0.002	0.27296	11.91	ug/L
	Pb	208	465975.496	1.601	2.650	235.69609	2.60	ug/L
	Bi	209	1402.380	4.561	0.008			ug/L
	Th	232	4221.982	2.214	0.024	2.26787	3.18	ug/L
L	U	238	1297.357	2.702	0.007	0.67999	3.78	ug/L
Γ	Na	23	5079260.028	7.726	30.903	2.29412	6.10	mg/L
	Mg	24	10742329.232	5.494	65.698	7.74759	2.46	mg/L
ĺ	K	39	11591521.216	8.894	65.222	2.83018	14.08	mg/L
ĺ	Ca	44	2827885.873	5.962	17.132	23.61676	2.50	mg/L
İ	Fe	54	6002057.108	7.952	36.503	19.66087	6.08	mg/L
>	Sc-1	45	163393.734	3.969	163393.734			mg/L
	Kr	83	133.335	21.687	50.556			mg/L

Sample ID: C131107-26 @10X

Report Date/Time: Tuesday, December 10, 2013 13:24:15

				QO Odiodiaioe	, , , , , , ,		
г	Analyte Li		QC Std % Recovery	Int Std % Recovery 114.952	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Be	6 9		117.302	•		
L	Al	27			·		
>	Sc	45		134.476			
_	V	51					
	Cr	52					
İ	Mn	55					
İ	Со	59					
İ	Ni	60					
Ĺ	Cu	65					
Γ	Zn	66		$\mathbf{x}_{i} = \mathbf{x}_{i}$			
>	Ge	72		112.782			
	As	75					
L	Se	82					
_	Υ	89		•			
	Мо	98					
	Ag	107					
	Ag	109					
	Cd	111					
	Cd	114		92.987			
>	In Sb	115 121		32.301			
L	Ba	135					
>	Tb	159		78.000			
1>	Но	165					
	TI	205					
i	Pb	208					
İ	Bi	209					
İ	Th	232		4			
Ĺ	U	238			The state of the s		
Γ	Na	23					
	Mg	24					
	K	39					
	Ca	44					
-	Fe	54					
<u>_</u> >	Sc-1	45					
	Kr	83					

Sample ID: C131107-29 @10X

Sample Date/Time: Tuesday, December 10, 2013 13:25:42

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-29 @10X.46519

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8722.205	5.446	8722.205			ug/L
L	Be	9	4.444	43.301	-0.001	-0.07032	36.66	ug/L
Γ	Al	27	397408.218	7.131	2.740	193.77498	11.83	ug/L
>	Sc	45	144534.964	5.136	144534.964			ug/L
	V	51	-1496.747	71.043	0.012	0.43576	61.69	ug/L
-	Cr	52	7732.003	1.880	0.001	0.05702	266.90	ug/L
	Mn	55	37452.467	3.088	0.244	6.46527	3.72	ug/L
	Co	59	493.909	11.097	0.003	0.08671	14.04	ug/L
	Ni	60	-392.346	7.255	-0.003	-0.43801	9.88	ug/L
L	Cu	65	1471.285	8.071	0.009	0.96201	13.71	ug/L
Γ	Zn	66	3952.917	3.482	0.039	6.57919	4.04	ug/L
>	Ge	72	86522.070	1.424	86522.070			ug/L
	As	75	166.725	46.415	0.005	0.59105	17.41	ug/L
L	Se	82	20.445	110.634	-0.000	-0.14171	216.69	ug/L
	Υ	89	3579.358	2.512	3550.469			ug/L
Γ	Мо	98	1525.011	2.375	0.005	0.72575	3.47	ug/L
1	Ag	107	43.333	36.690	0.000	0.00766	76.09	ug/L
1	Ag	109	42.778	21.458	0.000	0.00924	38.26	ug/L
	Cd	111	114.875	11.636	0.000	0.16197	12.61	ug/L
	Cd	114	227.110	17.246	0.001	0.12358	20.23	ug/L
>	In	115	261015.415	1.077	261015.415	•		ug/L
L	Sb	121	93.890	1.025	0.000	0.01474	2.50	ug/L
Γ	Ва	135	1765.249	2.361	0.010	4.45230	2.55	ug/L
>	Tb	159	172382.651	1.821	172382.651			ug/L
	Но	165	67.223	25.325	0.000			ug/L
	TI	205	80.001	25.345	-0.000	-0.00271	491.08	ug/L
	Pb	208	2798.021	1.259	0.016	1.37866	2.50	ug/L
	Bi	209	23.889	8.056	0.000			ug/L
	Th	232	198.892	9.998	0.001	0.09946	12.13	ug/L
L	U	238	924.513	3.856	0.005	0.49328	3.41	ug/L
Γ	Na	23	2049732.249	3.697	14.024	1.04114	5.09	mg/L
	Mg	24	2130979.581	3.595	14.727	1.73675	3.13	mg/L
	K	39	1704553.921	3.611	5.853	0.25398	13.46	mg/L
	Ca	44	2596707.523	5.278	17.806	24.54615	3.83	mg/L
	Fe	54	141431.001	5.046	0.764	0.41160	9.10	mg/L
L>	Sc-1	45	144534.964	5.136	144534.964			mg/L
	Kr	83	91.112	14.672	8.333			mg/L

Sample ID: C131107-29 @10X

Report Date/Time: Tuesday, December 10, 2013 13:27:18

				QO Galculatet	i values		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 113.971	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
>	Be	9		113.971			
Ļ	Al	27					
>		45		118.954			
	V	51	.*	110.00			
	Cr	52					
i	Mn	55					
į	Со	59					
i	Ni	60					
Ĺ	Cu	65					
Γ	Zn	66					
>	Ge	72		107.012			
	As	75					
L	Se	82					
_	Υ	89					
Ţ	Мо	98					
ļ	Ag	107				•	
	Ag	109					
1	Cd	111					
	Cd	114		00.500			
>	ln Ch	115		93.569			
L	Sb Ba	121 135					
1.	Тb	159		76.475			
>	Но	165		70.475			
	TI	205					
i	Pb	208					
i	Bi	209					
i i	Th	232					
i	U	238					
Ī	Na	23					
	Mg	24					
	K	39					
'	Са	44					
	Fe	54					
_>	Sc-1	45				•	
	Kr	83					

Sample ID: C131107-31 @10X

Sample Date/Time: Tuesday, December 10, 2013 13:28:45

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\C131107-31 @10X.46520

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
Γ>	Li ¹	6	9264.089	3.495	9264.089			ug/L
L	Be	9	10.000	33.333	0.000	0.00974	558.42	ug/L
Γ	Al	27	2483408.436	1.650	16.378	1158.40758	5.26	ug/L
>	Sc	45	151683.317	4.629	151683.317			ug/L
	٧ .	51	9412.093	7.164	0.085	3.03861	8.52	ug/L
	Cr	52	11969.785	0.962	0.027	1.09855	11.09	ug/L
	Mn	55	736204.983	7.729	4.836	127.99062	5.01	ug/L
	Co	59	2950.141	3.068	0.019	0.54034	7.52	ug/L
	Ni	60	610.154	28.173	0.003	0.45433	38.34	ug/L
L	Cu	65	21328.078	5.841	0.139	15.64472	3.63	ug/L
Γ	Zn	66	37522.511	5.346	0.427	71.82260	1.79	ug/L
>	Ge	72	86478.511	5.073	86478.511			ug/L
1.	As	75	794.857	17.345	0.012	1.40984	9.93	ug/L
L	Se	82	89.446	23.841	0.001	0.79622	32.95	ug/L
	Υ	89	20827.425	0.928	20798.536			ug/L
Γ	Мо	98	2326.804	5.049	0.008	1.16782	8.16	ug/L
İ	Ag	107	629.476	6.830	0.002	0.21678	6.08	ug/L
İ	Ag	109	591.139	3.744	0.002	0.21226	6.03	ug/L
į	Cd	111	1224.898	5.365	0.005	1.86104	7.68	ug/L
İ	Cd	114	2660.809	2.992	0.010	1.78166	1.90	ug/L
>	In	115	259298.437	2.623	259298.437	-		ug/L
Ĺ	Sb	121	202.225	3.331	0.001	0.06784	6.92	ug/L
Ē	Ва	135	15316.538	3.508	0.090	39.44377	2.61	ug/L
j >	Tb	159	170070.122	2.024	170070.122			ug/L
i	Но	165	340.565	4.414	0.002	•		ug/L
i	TI	205	149.446	13.765	0.000	0.04751	33.24	ug/L
-i	Pb	208	65988.798	1.230	0.387	34.45913	3.26	ug/L
İ	Bi	209	186.669	7.308	0.001			ug/L
ĺ	Th	232	770.603	4.060	0.004	0.41963	3.05	ug/L
i	U	238	533.912	1.719	0.003	0.28766	3.79	ug/L
Ē	Na	23	2041258.170	2.362	13.293	0.98686	2.98	mg/L
i	Mg	24	2535011.114	5.299	16.697	1.96904	5.36	mg/L
į	K	39	3806434.029	3.128	19.179	0.83223	8.84	mg/L
i	Ca	44	2662679.802	8.347	17.368	23.94210	3.82	mg/L
i	Fe	54	590045.903	11.634	3.666	1.97433	7.44	mg/L
j >	Sc-1	45	151683.317	4.629	151683.317	\$		mg/L
	Kr	83	97.223	9.748	14.445			mg/L

Sample ID: C131107-31 @10X

Report Date/Time: Tuesday, December 10, 2013 13:30:21

					QO Calculate	a values		•	
ſ	->	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 121.051	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff	
- 1	_	Be	9		121.001				
[=	Al	27						
i	>	Sc	45		124.838				
i		V	51						
i		Cr	52						
ĺ		Mn	55						
		Co	59						
		Ni	60						
L	-	Cu	65						
		Zn	66						
	>	Ge	72		106.958				
		As	75						
L		Se	82						
Г		Y Mo	89 98						
		Ag	96 107						
		Ag	107						
i		Cd	111		•				
i		Cd	114						
İ	>	ln ·	115		92.954				
L		Sb	121			-		•	
Γ		Ва	135						
		Tb	159	•	75.449				
		Но	165		•				
		TI	205						
		Pb	208						
		Bi	209				•		
-	,	Th U	232						
L		Na	238 23		•				
l		Mg	23 24						
		K	39						
i		Ca	44	•					
i		Fe	54						
Ŀ		Sc-1	45						
		Kr	83						

Sample ID: blank

Sample Date/Time: Tuesday, December 10, 2013 13:39:51

Sample Type: Sample Sample Description: Number of Replicates: 3 Batch ID: 1312035

Method File: C:\Elandata\Method\esat2010.mth
Dataset File: C:\Elandata\Dataset\Default\blank.46523

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
>	Li	6	8351.697	. 5.146	8351.697			ug/L
Ē	Ве	9	3.889	65.465	-0.001	-0.07582	54.70	ug/L
ļ	Al	27	1604.651	7.964	-0.008	-0.59262	11.62	ug/L
>	Sc	45	135506.823	1.703	135506.823			ug/L
ļ	٧	51	-1043.288	37.732	0.015	0.53656	18.41	ug/L
	Cr	52	6816.518	10.119	-0.002	-0.07747	298.15	ug/L
	Mn	55	1365.333	36.909	-0.005	-0.13368	70.26	ug/L
	Со	59	39.445	4.879	-0.000	-0.00172	15.01	ug/L
	Ni	60	24.811	6.065	-0.000	-0.05562	2.40	ug/L
L	Cu	65	55.556	12.490	-0.001	-0.14170	4.49	ug/L
Γ	Zn	66	157.780	1.614	-0.005	-0.80045	1.55	ug/L
>	Ge	72	88825.634	5.192	88825.634			ug/L
	As	75	-326.073	19.430	-0.000	-0.04599	215.66	ug/L
L	Se	82	11.333	55.883	-0.000	-0.27011	28.57	ug/L
	Υ	89	32.778	24.030	3.889			ug/L
Γ	Mo	98	156.615	15.421	-0.000	-0.01684	75.72	ug/L
	Ag	107	17.778	39.031	-0.000	-0.00182	123.23	ug/L
	Âg	109	15.000	11.111	-0.000	-0.00130	37.23	ug/L
	Cd	111	2.868	210.351	-0.000	-0.00831	104.69	ug/L
	Cd	114	28.498	25.787	-0.000	-0.01173	36.95	ug/L
>	In	115	276701.903	2.130	276701.903			ug/L
L	Sb	121	133.335	10.000	0.000	0.03010	16.60	ug/L
Γ	Ва	135	5.556	17.321	-0.000	-0.02562	7.44	ug/L
>	Tb	159	199341.808	1.595	199341.808			ug/L
	Но	165	5.000	33.333	-0.000			ug/L
	TI	205	97.779	14.193	0.000	0.00053	1417.52	ug/L
	Pb	208	109.445	2.326	-0.000	-0.01649	5.06	ug/L
	Bi	209	6.111	56.773	-0.000			ug/L
	Th	232	12.222	34.317	-0.000	-0.00426	44.59	ug/L
Ĺ	U	238	5.556	45.826	-0.000	-0.00038	310.95	ug/L
Γ	Na	23	4147.498	10.829	-0.144	-0.01072	2.63	mg/L
	Mg	24	2315.432	10.937	-0.011	-0.00125	18.84	mg/L
	K	39	739674.035	3.949	-0.502	-0.02179	52.44	mg/L
Ì	Ca	44	18393.713	3.291	-0.031	-0.04306	20.14	mg/L
1 -	Fe	54	30784.243	11.125	0.011	0.00617	250.14	mg/L
Ĺ>	Sc-1	45	135506.823	1.703	135506.823			mg/L
_	Kr	83	98.334	13.238	15.556			mg/L

Sample ID: blank

Report Date/Time: Tuesday, December 10, 2013 13:41:28

				a o oaroaratot	, varace		
Г	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
[>	Li D-	6		109.129			
. F	Be	9					
	Al	27		444.504			
>	Sc	45		111.524			
	V	51					
1.	Cr	52					
1	Mn	55					
	Co	59					
	Ni	60					
Ļ	Cu	65					
	Zn	66 70		100.001			
>	Ge	72 75	•	109.861			
l	As	75					
L	Se Y	82					
г	r Mo	89 98					
-		96 107					
1	Ag	107					
l I	Ag Cd	111					
1	Cd	114					
1		115		99.193		2.0	
>	In Sb	121		99.193			
L F	Ва	135					
>	Tb	159		88.435			
>	Но	165		00.433			
	TI	205					
İ	Pb	208					
ì	Bi	209					
i	Th	232			•		
	U	238					
ŗ	Na	23					
i	Mg	24					
i	ĸ	39	**				
i	Са	44					
į	Fe	54					
į_>	Sc-1	45					
	Kr	83	•				

Sample ID: SEQ-CCV

Sample Date/Time: Tuesday, December 10, 2013 13:42:54

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-CCV.46524

Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean	Conc. RSD	Sample Unit
[>	Li	6	8257.118	1.145	8257.118			ug/L
L	Be	9	2669.459	4.101	0.322	44.14415	3.71	ug/L
Γ	Al	27	440680.429	4.038	3.326	235.27039	9.60	ug/L
>	Sc	45	132146.441	5.697	132146.441			ug/L
	V	51	175618.154	4.122	1.357	48.52703	9.73	ug/L
	Cr	52	157343.590	2.781	1.140	46.78584	4.37	ug/L
	Mn	55	249280.242	2.935	1.875	49.61657	5.49	ug/L
	Co	59	213592.986	1.686	1.621	45.74830	7.51	ug/L
	Ni	60	47566.100	4.443	0.361	47.41591	10.02	ug/L
L	Cu	65	56859.693	0.047	0.430	48.36900	5.93	ug/L
Γ	Zn	66	29004.998	4.042	0.302	50.79767	4.35	ug/L
>	Ge	72	93967.761	3.378	93967.761			ug/L
	As	75	39464.742	2.061	0.424	47.96527	4.38	ug/L
L	Se	82	3785.645	3.034	0.040	47.02716	5.04	ug/L
	Υ	89	43.889	10.962	15.000			ug/L
. [Мо	98	99406.870	3.501	0.346	48.68000	5.57	ug/L
	Ag	107	152065.146	1.459	0.530	49.01319	1.73	ug/L
	Ag	109	145455.802	2.048	0.507	48.60673	4.00	ug/L
	Cd	111	35406.751	3.334	0.123	48.89113	5.45	ug/L
	Cd	114	78521.398	0.895	0.274	48.29007	3.28	ug/L
>	In	115	287010.497	2.358	287010.497			ug/L
L	Sb	121	110059.522	3.083	0.383	48.41104	4.85	ug/L
Γ	Ва	135	24632.916	2.772	0.120	52.65594	0.85	ug/L
>	Tb	159	204983.781	3.529	204983.781			ug/L
	Ho	165	5.556	96.437	-0.000			ug/L
	TI	205	91352.038	2.943	0.445	53.63977	2.93	ug/L
	Pb	208	121609.854	1.002	0.593	52.73805	3.23	ug/L
	Bi	209	18.333	36.364	0.000	,		ug/L
	Th	232	116850.054	2.990	0.570	54.06334	1.46	ug/L
L	U	238	116751.185	1.893	0.570	52.72084	2.05	ug/L
Γ	Na ·	23	8325188.324	4.582	62.949	4.67315	6.76	mg/L
	Mg	24	5238500.096	2.761	39.741	4.68658	8.53	mg/L
	K	39	15151029.472	5.027	109.117	4.73490	10.76	mg/L
	Ca	44	486249.578	5.916	3.513	4.84273	2.49	mg/L
	Fe	54	1254101.042	5.343	9.276	4.99605	1.03	mg/L
_>	Sc-1	45	132146.441	5.697	132146.441			mg/L
-	Kr	83	111.112	7.399	28.334			mg/L

Sample ID: SEQ-CCV

Report Date/Time: Tuesday, December 10, 2013 13:44:29

		•		QO Carcarato	, , , , , , , , , , , , , , , , , , , ,		
[>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 107.894	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
	Be	9	88.288	107.001			
L r	Al	27	94.108				
>	Sc	45	01.100	108.759			
	V	51	97.054				
	Cr	52	93.572				
	Mn	55	99.233				
i	Со	59	91.497				
i	Ni	60	94.832				
i	Cu	65	96.738				
Ē	Zn	66	101.595		•		
>	Ge	72		116.220			
İ	As	75	95.931				
Ĺ	Se	82	94.054				•
_	Υ	89					
Γ	Мо	98	97.360				
ĺ	Ag	107	98.026				
	Ag	109	97.213				
	Cd	111	97.782				
	Cd	114					
>	In	115		102.888			
L	Sb	121	96.822				
Γ	Ва	135	105.312				
>	Tb	159		90.938			
	Но	165					
	TI	205	107.280	•			
	Pb	208	105.476				
	Bi	209		i .			
	Th	232	108.127				
Ļ	U	238	105.442				
	Na	23	93.463		•		•
	Mg	24	93.732				
	K	39	94.698				
1	Ca	44	96.855				
	Fe	54	99.921				
_>	Sc-1	45					
	Kr	83					

Sample ID: SEQ-CCB

Sample Date/Time: Tuesday, December 10, 2013 13:46:10

Sample Type: Sample Sample Description: Number of Replicates: 3

Batch ID:

Method File: C:\Elandata\Method\esat2010.mth

Dataset File: C:\Elandata\Dataset\Default\SEQ-CCB.46525

Sample Prep Volume (mL): Initial Sample Quantity (mg):

Aliquot Volume (mL): Diluted To Volume (mL):

Concentration Results

	Analyte	Mass	Meas. Intens. Mean	Meas. Intens. RSD	Net Intens. Mean	Conc. Mean C	Conc. RSD	Sample Unit
[>	Li	6	8097.469	3.487	8097.469			ug/L
ĺ	Ве	9	1.667	100.000	-0.001	-0.11055	25.77	ug/L
Ē	Al	27	2253.185	6.559	-0.003	-0.21441	18.66	ug/L
>	Sc	45	131326.837	9.538	131326.837			ug/L
	V	51	-1581.187	74.045	0.011	0.39825	72.48	ug/L
ĺ	Cr	52	6958.880	5.589	0.001	0.03678	255.55	ug/L
j	Mn	55	1691.971	30.895	-0.002	-0.04948	287.67	ug/L
i	Co	59	71.112	14.128	0.000	0.00530	13.94	ug/L
j	Ni	60	58.456	10.885	-0.000	-0.02042	58.40	ug/L
ĺ	Cu	65	157.224	5.440	-0.000	-0.05247	22.54	ug/L
Ī	Zn	66	395.568	7.588	-0.002	-0.36231	4.69	ug/L
>	Ge	72	90266.004	8.791	90266.004			ug/L
İ	As	75	-267.534	61.918	0.000	0.03202	711.21	ug/L
Ĺ	Se	82	20.222	37.601	-0.000	-0.15943	45.65	ug/L
	Υ	89	33.889	17.272	5.000			ug/L
Γ	Мо	98	396.132	22.780	0.001	0.09796	47.79	ug/L
j	Ag	107	41.667	21.166	0.000	0.00571	53.50	ug/L
	Ag	109	43.889	14.377	0.000	0.00813	23.79	ug/L
	Cd	111	14.990	34.913	0.000	0.00821	84.31	ug/L
	Cd	114	37.169	13.725	-0.000	-0.00703	44.50	ug/L
>	In.	115	287359.831	2.167	287359.831			ug/L
L	Sb	121	330.564	12.937	0.001	0.11481	18.43	ug/L
Γ	Ва	135	15.556	43.301	-0.000	-0.00507	274.33	ug/L
>	Tb	159	207790.525	1.696	207790.525			ug/L
	Ho	165	7.222	48.038	-0.000			ug/L
	TI	205	166.113	15.684	0.000	0.03797	43.54	ug/L
	Pb	208	174.445	4.903	0.000	0.00932	26.48	ug/L
	Bi	209	7.778	61.859	-0.000			ug/L
	Th	232	48.334	15.802	0.000	0.01205	32.17	ug/L
L	U	238	15,556	59.010	0.000	0.00399	103.90	ug/L
Γ	Na	23	18005.931	4.255	-0.037	-0.00275	42.44	mg/L
	Mg	24	3688.868	5.471	0.000	0.00006	242.99	mg/L
	K	39	758178.956	1.828	-0.158	-0.00687	309.16	mg/L
	Ca	44	18603.768	2.279	-0.025	-0.03407	42.53	mg/L
	Fe	54	30504.418	11.213	0.018	0.00945	190.78	mg/L
_>	Sc-1	45	131326.837	9.538	131326.837			mg/L
	Kr	83	101.112	5.299	18.334			mg/L

Sample ID: SEQ-CCB

Report Date/Time: Tuesday, December 10, 2013 13:47:46

Page 1

				QO Galoalatoa			
Γ.	Analyte Li	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Diff	Dup. Rel. % Diff
[>	Be	6 9		105.808			
L	Al	9 27					
	Sc	45		100.004			
>	V .	51		108.084			
	v Cr	52		•			
-	Mn	55					
i	Co	59					
i	Ni	60				•	•
i	Cu	65					
ř	Zn	66					
>	Ge	72		111.642			
i	As	75					
i	Se	82					
_	Υ	89					
Γ	Mo	98					
	Ag	107					
	Ag	109					
	Cd	111					
	Cd	114					
>	In	115		103.014			
L	Sb	121					
Γ	Ва	135					
>	Tb	159		92.183			
	Но	165					
	TI	205					
ļ	Pb	208					
	Bi	209					
	Th	232					
Ļ	U	238					
	Na	23					
	Mg	24					
	K .	39					
	Ca	44 54					
	Fe So 1	54					
<u>_</u> >	Sc-1 Kr	45					*
	M	83					